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ssFix (Xin and Reiss, ASE’17)
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Patch Generation

1.Code Translation

2.Code Matching
3.Modification
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Modification
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ssFix’s Component Analysis

Fault Localization Code Search Code Reuse

Can ssFix find it? Can ssFix reuse fix code?

Does fix code exist? Quite often as 
exprs/stmts

Not very effective, can be improved!
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To Improve …

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary 

thresholds
• Modification: Prone to producing defective patches & too many patches
• Patch Validation: Expensive

Static analysis



sharpFix

Code-search-based repair technique

Follows ssFix’s basic idea

ssFix’s approach for fault localization

Different approaches for 

code search & reuse
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Defects4J M69 Bug



Fault Localization

sharpFix’s approach
• Employs GZoltar for spectrum-based fault localization
• Also analyzes stack trace (if any) 



Code Search

Merge



Code Search

Local Search
• Search the local (faulty) program
• Bug stmt as query
• Compare with local program stmts



Statement Comparison

distribution cumulativeprobability cumulative probability t

cumulativeprobability cumulative probability tdistribution

ttdistributionjiout



Code Search
Global Search
• Search a code repository
• Bug method as query
• Compare with repository methods
• Identify similar stmts within a method



Code Search
Method comparison
• Extract tokens (k-grams + words)
• Indexed tokens of repository methods
• TF-IDF vector space model



Code Search

MergeRank by scores (normalized)
Select the Top-k stmts (k=200)



Code Search

No. 2



Code Reuse

1.Code Translation

2.Code Matching
3.Modification

4.Patch Validation



Finding “Related” Identifiers

• Collect the identifiers
• Compare identifier’s original names
• Match enclosing method & class names
• Compare identifier’s usage context
• Compare tokens extracted from identifiers



Code Translation
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Code Matching

Match expressions and statements
Transfer code by matching result

Type checking
Token matching



Code Matching



Modification

Expr/Stmt Replacement
Method Replacement
Stmt Insertion
Adding if-guard



Modification

Replace



Patch Validation

Patch sorting
Static checking
Compiling
Test case running
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Evaluation

• RQ1: Is sharpFix’s code search better than ssFix’s?
• RQ2: Is sharpFix’s code reuse better than ssFix’s?
• RQ3: Can sharpFix do better repair than ssFix and others?
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• RQ: Does the bug-fix code exist?
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Fix Ingredient Experiment

• RQ: Does the bug-fix code exist?
• Results used as truths for code search & reuse experiments

• Defined 6 types of fix ingredients (as exprs & stmts)
• Identified 103 Defects4J bugs that are “simple”
• Identified fix ingredients
• Search fix ingredients in local program & repository (~81G)

do  {…} while (fa * fb >= 0.0)
do  {…} while (fa * fb > 0.0)



Fix Ingredient Experiment

In the Exact Form

In the Parameterized Form



Fix Ingredient Experiment

Promising results for 
Code-search-based repair



Code Search Comparison

• Based on 103 Defects4J bugs
• Manually provided ssFix & sharpFix with the faulty stmt
• Ran code search
• Analyzed the results



Code Search Comparison



Code Reuse Comparison

• Based on code-search-succeeded bugs
• Provided ssFix & sharpFix with the bug & fix code
• Ran code reuse
• Evaluated the correctness of the plausible patch generated

Validated by test suite



Code Reuse Comparison

sharpFix reused 50.8% fix code
ssFix reused 40.4% fix code



Repair

• Automatic bug repair
• Two datasets: Defects4J (357 bugs) & Bugs.jar-ELIXIR (127 bugs)
• ssFix & sharpFix on Defects4J
• ssFix, sharpFix, and four others on Bugs.jar-ELIXIR



Defects4J
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Conclusion & Future Work

• Repair by code search is promising!
• ssFix’s code-search-based repair can be improved
• sharpFix follows ssFix’s idea but improves code search & reuse
• sharpFix can do better repair



Conclusion & Future Work

• Repair by code search is promising!
• ssFix’s code-search-based repair can be improved
• sharpFix follows ssFix’s idea but improves code search & reuse
• sharpFix can do better repair

• Syntactic + semantic code search
• Patch overfitting
• Other dataset




