
Better Code Search and Reuse for
Better Program Repair

Qi Xin and Steven P. Reiss

Automated Program Repair

Faulty Program

Test Cases

Patched Program

Automated Program Repair

Faulty Program

Test Cases

Patched Program

Automatic

Repair Steps

Fault
Localization

Patch
Generation

Patch
Validation

1 2 3

Repair Steps

Fault
Localization

Patch
Generation

Patch
Validation

1 2 3

• Genetic Algorithms
• Human-Written Templates
• Historical Fixes
• Code Synthesis
• Code Search
• State monitoring
• Invariants
• Bug reports
• …

Patch Generation

• Genetic Algorithms
• Human-Written Templates
• Historical Fixes
• Code Synthesis
• Code Search
• State monitoring
• Invariants
• Bug reports
• …

Patch Generation

ssFix (Xin and Reiss, ASE’17)

The Idea of ssFix

Buggy Code Candidate Code

Patch Code

Faulty Program

Test Cases

Faulty Program

Test Cases

Buggy Stmts Fault Localization

Faulty Program

Test Cases

Buggy Code
Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository Candidate Code Set

Faulty
Program

Code SearchBuggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Candidate Code

Candidate Code Set

Faulty
Program

Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Candidate Code Set

Faulty
Program

Patch Generation

Buggy Stmts

Patch Generation

1.Code Translation

2.Code Matching
3.Modification

Code Translation

x = x + y;

y + +;

x = m(x + 4);

z = x;

x0 = x0 + y0;

y0 + +;

x0 = m(x0 + 1);

z0 = x0;

. . .

. . .

. . .

. . .

Buggy Code Candidate Code

Code Translation

x = x + y;

y + +;

x = m(x + 4);

z = x;

x0 = x0 + y0;

y0 + +;

x0 = m(x0 + 1);

z0 = x0;

. . .

. . .

. . .

. . .

Buggy Code Candidate Code

Code Translation

x = x + y;

y + +;

x = m(x + 4);

z = x;

x = x + y;

y + +;

x = m(x + 1);

z = x;

. . .

. . .

. . .

. . .

Buggy Code Candidate Code

Code Matching

x = x + y;

y + +;

x = m(x + 4);

z = x;

x = x + y;

y + +;

x = m(x + 1);

z = x;

. . .

. . .

. . .

. . .

Buggy Code Candidate Code

Modification

x = x + y;

y + +;

x = m(x + 4);

z = x;

x = x + y;

y + +;

x = m(x + 1);

z = x;

. . .

. . .

. . .

. . .

Buggy Code Candidate Code

Modification

x = x + y;

y + +;

z = x;

x = x + y;

y + +;

x = m(x + 1);

z = x;

. . .

. . .

. . .

. . .

x = m(x + 1);

Buggy Code Candidate Code

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Candidate Code Set

Faulty
Program

Patch Generation

Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Patched Program

Candidate Code Set

Faulty
Program

Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Patched Program

Candidate Code Set

Faulty
Program

Patch Validation

Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Patched Program

Candidate Code Set

Faulty
Program

Code Reuse

Buggy Stmts

Faulty Program

Test Cases

Buggy Code

Code Repository

Patched Code Candidate Code

Patched Program

Candidate Code Set

Faulty
Program

Buggy Stmts

ssFix’s Component Analysis

Fault Localization Code Search Code Reuse

ssFix’s Component Analysis

Fault Localization Code Search Code Reuse

ssFix’s Component Analysis

Fault Localization Code Search Code Reuse

Can ssFix find it? Can ssFix reuse fix code?

Does fix code exist?

ssFix’s Component Analysis

Fault Localization Code Search Code Reuse

Can ssFix find it? Can ssFix reuse fix code?

Does fix code exist? Quite often as
exprs/stmts

Not very effective, can be improved!

ssFix’s weakness

• Code search
• Same query & searching method for local & global search

ssFix’s weakness

• Code search
• Same query & searching method for local & global search

To Improve …

• Code search
• Same query & searching method for local & global search

Using different queries &
searching methods

ssFix’s weakness

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary

thresholds
• Modification: Prone to producing defective patches & too many patches
• Patch Validation: Expensive

To Improve …

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary

thresholds
• Modification: Prone to producing defect patches & too many patches
• Patch Validation: Expensive

Leveraging more other info:
original names, locations,

& extracted tokens

To Improve …

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary

thresholds
• Modification: Prone to producing defective patches & too many patches
• Patch Validation: Expensive

Token matching with greatly
simplified rules and no thresholds

To Improve …

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary

thresholds
• Modification: Prone to producing defective patches & too many patches
• Patch Validation: Expensive

Using a different set of
operations with better support

To Improve …

• Code reuse
• Code Translation: Identifier comparison based on usage context only
• Code Matching: Tree-based algorithm with complex rules and arbitrary

thresholds
• Modification: Prone to producing defective patches & too many patches
• Patch Validation: Expensive

Static analysis

sharpFix

Code-search-based repair technique

Follows ssFix’s basic idea

ssFix’s approach for fault localization

Different approaches for

code search & reuse

Defects4J M69 Bug

Defects4J M69 Bug

Fault Localization

sharpFix’s approach
• Employs GZoltar for spectrum-based fault localization
• Also analyzes stack trace (if any)

Code Search

Merge

Code Search

Local Search
• Search the local (faulty) program
• Bug stmt as query
• Compare with local program stmts

Statement Comparison

distribution cumulativeprobability cumulative probability t

cumulativeprobability cumulative probability tdistribution

ttdistributionjiout

Code Search
Global Search
• Search a code repository
• Bug method as query
• Compare with repository methods
• Identify similar stmts within a method

Code Search
Method comparison
• Extract tokens (k-grams + words)
• Indexed tokens of repository methods
• TF-IDF vector space model

Code Search

MergeRank by scores (normalized)
Select the Top-k stmts (k=200)

Code Search

No. 2

Code Reuse

1.Code Translation

2.Code Matching
3.Modification

4.Patch Validation

Finding “Related” Identifiers

• Collect the identifiers
• Compare identifier’s original names
• Match enclosing method & class names
• Compare identifier’s usage context
• Compare tokens extracted from identifiers

Code Translation

Code Translation

Code Matching

Match expressions and statements
Transfer code by matching result

Type checking
Token matching

Code Matching

Modification

Expr/Stmt Replacement
Method Replacement
Stmt Insertion
Adding if-guard

Modification

Replace

Patch Validation

Patch sorting
Static checking
Compiling
Test case running

ssFix’s Failure

• Code Search

ssFix’s Failure

• Code Search
• Code Reuse

ssFix’s Failure

• Code Search
• Code Reuse

No P
atch

Gen
erat

ed

Evaluation

• RQ1: Is sharpFix’s code search better than ssFix’s?
• RQ2: Is sharpFix’s code reuse better than ssFix’s?
• RQ3: Can sharpFix do better repair than ssFix and others?

Fix Ingredient Experiment

• RQ: Does the bug-fix code exist?
• Results used as truths for code search & reuse experiments

Fix Ingredient Experiment

• RQ: Does the bug-fix code exist?
• Results used as truths for code search & reuse experiments

• Defined 6 types of fix ingredients (as exprs & stmts)
• Identified 103 Defects4J bugs that are “simple”
• Identified fix ingredients
• Search fix ingredients in local program & repository (~81G)

do {…} while (fa * fb >= 0.0)
do {…} while (fa * fb > 0.0)

Fix Ingredient Experiment

In the Exact Form

In the Parameterized Form

Fix Ingredient Experiment

Promising results for
Code-search-based repair

Code Search Comparison

• Based on 103 Defects4J bugs
• Manually provided ssFix & sharpFix with the faulty stmt
• Ran code search
• Analyzed the results

Code Search Comparison

Code Reuse Comparison

• Based on code-search-succeeded bugs
• Provided ssFix & sharpFix with the bug & fix code
• Ran code reuse
• Evaluated the correctness of the plausible patch generated

Validated by test suite

Code Reuse Comparison

sharpFix reused 50.8% fix code
ssFix reused 40.4% fix code

Repair

• Automatic bug repair
• Two datasets: Defects4J (357 bugs) & Bugs.jar-ELIXIR (127 bugs)
• ssFix & sharpFix on Defects4J
• ssFix, sharpFix, and four others on Bugs.jar-ELIXIR

Defects4J

Bugs.jar-ELIXIR

39

43

5

6

8

2

15

11

1

1

0

1

0 5 10 15 20 25 30 35 40 45 50

sharpFix

ssFix

jGenProg

jKali

Nopol

HDRepair

Bugs.jar-ELIXIR

Correct Plausible

Conclusion & Future Work

• Repair by code search is promising!
• ssFix’s code-search-based repair can be improved
• sharpFix follows ssFix’s idea but improves code search & reuse
• sharpFix can do better repair

Conclusion & Future Work

• Repair by code search is promising!
• ssFix’s code-search-based repair can be improved
• sharpFix follows ssFix’s idea but improves code search & reuse
• sharpFix can do better repair

• Syntactic + semantic code search
• Patch overfitting
• Other dataset

