
Evolutionary Computation for
Improving Malware Analysis

Kevin Leach1, Ryan Dougherty2, Chad Spensky3,
Stephanie Forrest2, Westley Weimer1

1University of Michigan
2Arizona State University

3University of California, Santa Babara

June 1, 2019

1/18



Setting the Stage

Ï Can we improve the efficiency of
automated malware analysis using
evolutionary computation?

2/18



Introduction

3/18



Malware Analysis

Ï Analysts want to quickly identify
malware behavior

Ï What damage does it do?
Ï How does it infect a system?
Ï How do we defend against it?

4/18



Stealthy Malware
Ï Growing volume of stealthy malware
Ï Malware sample maintains secrecy by using

artifacts to detect analysis environments
Ï Timing artifacts — overhead introduced by analysis

Ï Single-stepping instructions with debugger is slow
Ï Imperfect VM environment does not match native speed

Ï Functional artifacts — features introduced by analysis
Ï isDebuggerPresent() — legitimate feature abused by

adversaries
Ï Incomplete emulation of some instructions by VM
Ï Device names (hard drive named “VMWare disk”)

Ï Automated analysis is difficult

5/18



Automated Malware Analysis

Ï Cluster of servers analyzes malware
Ï Analysis success depends on cluster’s environment

(e.g., OS, virtualization)

6/18



Transparency

Ï We want to understand stealthy samples

Ï We can mitigate artifacts
Ï Hook/intercept API calls

(e.g., isDebuggerPresent())
Ï Spoof timing

(e.g., virtualize result of rdtsc instruction)
Ï Use alternate virtualization

(e.g., a sample that detects VMWare may not detect
VirtualBox)

7/18



Cost of Transparency
Ï Mitigation costs resources

Ï Development effort
(e.g., modifying virtualization)

Ï Execution time
(e.g., due to runtime overhead)

Ï Mitigation covers some subset of
malware

Ï Artifact category
(e.g., hooking disk-related APIs covers
malware that checks the disk)

8/18



Key Idea: Transparency/Cost

Ï We can control which artifacts are
exposed

Ï i.e., control costs and coverage

Ï Use a vector of yes/no answers

VMWare? large disk? Spoof timers? cost

0 1 0 x
1 0 1 y

9/18



Key Idea: Transparency/Cost

Ï Derive a cost model empirically
Ï What are the values of x and y?

VMWare? large disk? Spoof timers? cost

0 1 0 x
1 0 1 y

10/18



Automated Malware Analysis

Ï Can we analyze more stealthy malware if
we offer different analysis environments?

11/18



Proposed Architecture

Covering array GI algorithm

Cost model Artifacts

Server Cluster

Stealthy
Malware

1©

2©

3©

12/18



Proposed Approach

Given: Cost model, number of servers
Find: settings that minimize cost, maximize coverage

Config Server A0 A1 A2 cost

1 1 0 1 0 3
2 1 0 1 2

2 1 0 1 1 4
2 1 1 0 3

3 1 0 0 0 1
2 1 1 1 7

13/18



Proposed Approach

Given: Cost model, number of servers
Find: settings that minimize cost, maximize coverage

Config Server A0 A1 A2 cost

1 1 0 1 0 3
2 1 0 1 2

2 1 0 1 1 4
2 1 1 0 3

3 1 0 0 0 1
2 1 1 1 7

14/18



Proposed Approach

Given: Cost model, number of servers
Find: settings that minimize cost, maximize coverage

Config Server A0 A1 A2 cost

1 1 0 1 0 3
2 1 0 1 2

2 1 0 1 1 4
2 1 1 0 3

3 1 0 0 0 1
2 1 1 1 7

15/18



Initial Results
Ï Challenge Ground-truth data is hard to

come by
Ï Manually reverse engineered 20 samples

Ï Baseline analyze each with
high-transparency, high-cost analysis
(e.g., all 1’s)

Ï roughly 360x overhead

Ï Cost Function We estimated a cost
function based manual review

16/18



Initial Results
Baseline Us / 2 servers Us / 4 servers Us / 8 servers

360x 16.14 – 64.51 12.06 – 49.39 1.05 – 30.92

Ï Promising improvements to throughput
(potentially, by 1–2 orders of magnitude)

Ï Future work
Ï Ongoing analysis involving 20k+ stealthy

samples
Ï Need to empirically derive cost function

(rather than manual assessment)

17/18



Conclusion

Ï We can control which artifacts
are exposed to stealthy malware
samples

Ï We can evolve a set of analysis
server configurations to
maximize coverage while
minimizing cost

18/18


