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Setting the Stage

- Gan we improve the efficiency of
automated malware analysis using
evolutionary computation?




Introduction
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Malware Analysis

- Analysts want to quickly identify

malware behavior

- What damage does it do?
- How does it infect a system?
- How do we defend against it?
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Stealthy Malware

» Growing volume of stealthy malware

» Malware sample maintains secrecy by using
artifacts to detect analysis environments

» Timing artifacts — overhead introduced by analysis
» Single-stepping instructions with debugger is slow
» Imperfect VM environment does not match native speed
» Functional artifacts — features introduced by analysis
> isDebuggerPresent () — legitimate feature abused by
adversaries
» Incomplete emulation of some instructions by VM
» Device names (hard drive named “VMWare disk”)

» Automated analysis is difficult
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Automated Malware Analysis

» Cluster of servers analyzes malware

» Analysis success depends on cluster’s environment
(e.g., OS, virtualization)
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Transparency

~ We want to understand stealthy samples

~ We can mitigate artifacts

» Hook/intercept API calls
(e.g., isDebuggerPresent())

» Spoof timing
(e.g., virtualize result of rdtsc instruction)

» Use alternate virtualization
(e.g., a sample that detects VMWare may not detect
VirtualBox)




Cost of Transparency

-~ Mitigation costs resources
- Development effort
(e.g., modifying virtualization)
- Execution time
(e.g., due to runtime overhead)

- Mitigation covers some subset of
malware
- Artifact category
(e.g., hooking disk-related APIs covers
malware that checks the disk)
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Key Idea: Transparency/Cost

- We can control which artifacts are
exposed

- 1.e., control costs and coverage

- Use a vector of yes/no answers

VMWare? large disk? Spoof timers? | cost

0 1 0 x
1 0 1 y




Key Idea: Transparency/Cost

- Derive a cost model empirically
- What are the values of x and y?

VMWare? large disk? Spoof timers? | cost

0 1 0 X
1 0 1 y




Automated Malware Analysis

~ Can we analyze more stealthy malware if
we offer different analysis environments?
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Proposed Architecture
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Proposed Approach

Given: Cost model, number of servers
Find: settings that minimize cost, maximize coverage

Config Server | AO A1 A2 | cost

1 1 o 1 0 |3
2 1 1 12
2 1 o 1 1 |4
2 i1 0 |3
3 1 0O 0 0 |1
2 1 1 1 |7
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Initial Results

~ Challenge Ground-truth data is hard to
come by

- Manually reverse engineered 20 samples

- Baseline analyze each with
high-transparency, high-cost analysis
(e.g., all 1’s)

~ roughly 360x overhead

» Cost Function We estimated a cost
function based manual review




Initial Results

Baseline Us /2 servers Us/4 servers Us/ 8 servers
360x 16.14-64.51 12.06 -49.39 1.05-30.92

~ Promising improvements to throughput

(potentially, by 1—2 orders of magnitude)
- Future work

- Ongoing analysis involving 20k+ stealthy
samples

- Need to empirically derive cost function
(rather than manual assessment)




Conclusion

- We can control which artifacts
are exposed to stealthy malware
samples

- We can evolve a set of analysis
server configurations to
maximize coverage while
minimizing cost




