MINING PATTERNS FROM GENETIC
MPROVEMENT EXPERIMENTS

GI@ICSE 2079 - MONTREAL - MAY 28TH 20179 1

Oliver Krauss (presenting), Hanspeter Mossenbock,
Michael Affenzeller




ABSTRACT

e Gl runs produce and evaluate many individuals

e Mine this information to find:
» anti-patterns - restrict search space

= optimization-patterns - use in grafting operators




—“NABLING DATA FOR MINING

e Represent code as Abstract Syntax Tree (AST)
= should be fine granular

o | 0g evaluations (performance, successful
executions, ...)

e | Og relationships between individuals (crossover,
mutation...)




Figure: Newtonian approximation (sgare root) as AST



@ Performance

c

Figure: Data model for pattern mining

OptimizedAST



FREQUENT PATTERN MINING (FPM)

e Finds largest fequently recurring subgraphns

e Does not handle significance
= currently manual

» future statistics or observed/expected freguency
e SOTA—>SLEUTH ?



MINING OPTIMIZATION / ANTI
PATTERNS

e Set found patterns into context
= |n/output datatypes

= Problem domain
= Similar behaviour in fitness (enerqy, ...)

e FPM in solution space
e FPM In problem space
e See if any found patterns correlate



OPTIMIZATION PATTERS

Goal: find source code that can be replaced by
something better

e Search solution space with high quality for
optimization-patterns (ex. performance)

e Search original ASTs of found patterns for
unoptimized-patterns



AS TN AST OUT

@ replace @

—_—

2
BN o

Figure: Optimization pattern (left unoptimized, right
optimized)




ANTI| PATTERNS

Goal: find patterns that negatively influence solutions

e Can also be used to reduce the search space

e Search solution space with low quality for anti-
patterns

e Optional: Search original ASTs to find out It antl
natterns match specific domains



GEN

RIFYING PATTERNS BY
HIERARCHY

e Gl is done with Truffle 3 and Graal
e Operators have a class hierarchy

Figure: Truffle node class hierarchy



ol Jor

raise hierarchy of literals:

—igure: Finding larger patterns by hierarchy



GENERIFYING PATTERNS BY
WILDCARDS (FUTURE WORK)

e Combine smaller patterns with "brigges
o *=(.*
o =1
e V=01




CONCLUSION

e Successfully used in biasing operators
o Still early stage
e Currently restricted to trees, due to SLEUTH



OUTLOOK

e Empirical study for energy consumption patterns
= planned @GPCE 2019

e Extending wildcard patterns
e Your feedback here



QUESTIONS?



CONTACT

Oliver Krauss

oliverkrauss@ftn-hagenberg.at

+43 (0)50804-27195




>

~

>

“NC

=S

1. 0. Krauss, H. Mossenbock, M. Affenzeller, 2019
Mining Patterns from Genetic Improvement
Experiments, oth International Workshop on Genetic
improvement, May 2079. last accessed 19.05.2019

7M. J. Zaki, 2005 Efficiently mining frequent
embedded unordered trees, Fundamenta
Informaticae, vol. 66, no. 1-2, pp. 33—52, Mar. 2005,
special issue on Advances in Mining Grapns, Trees
and Sequences. last accessed 19.05.2019


file:///home/p40984/Documents/Dissertation/GeneticCompilerEvolution.wiki/ICSE2019_Presentation
http://geneticimprovementofsoftware.com/paper_pdfs/krauss2019mining.pdf
file:///home/p40984/Documents/Dissertation/GeneticCompilerEvolution.wiki/ICSE2019_Presentation
file:///home/p40984/Documents/Dissertation/GeneticCompilerEvolution.wiki/ICSE2019_Presentation/www.cs.rpi.edu/~zaki/PaperDir/FI05.pdf

3. C. Wimmer, T. Wdrhtinger, 2012 Truffle: A Self-
optimizing Runtime System. In Proceedings of the
3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH
12). ACM, New York, NY, USA, 13=14. last acessed:

19.05.2019


file:///home/p40984/Documents/Dissertation/GeneticCompilerEvolution.wiki/ICSE2019_Presentation
file:///home/p40984/Documents/Dissertation/GeneticCompilerEvolution.wiki/ICSE2019_Presentation/lafo.ssw.jku.at/papers/2012_SPLASH_Truffle.pdf

