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ABSTRACT

e Gl runs produce and evaluate many individuals

e Mine this information to find:
» anti-patterns - restrict search space

= optimization-patterns - use in grafting operators




—“NABLING DATA FOR MINING

e Represent code as Abstract Syntax Tree (AST)
= should be fine granular

o | 0g evaluations (performance, successful
executions, ...)

e | Og relationships between individuals (crossover,
mutation...)




Figure: Newtonian approximation (sgare root) as AST
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Figure: Data model for pattern mining
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FREQUENT PATTERN MINING (FPM)

e Finds largest fequently recurring subgraphns

e Does not handle significance
= currently manual

» future statistics or observed/expected freguency
e SOTA—>SLEUTH ?



MINING OPTIMIZATION / ANTI
PATTERNS

e Set found patterns into context
= |n/output datatypes

= Problem domain
= Similar behaviour in fitness (enerqy, ...)

e FPM in solution space
e FPM In problem space
e See if any found patterns correlate



OPTIMIZATION PATTERS

Goal: find source code that can be replaced by
something better

e Search solution space with high quality for
optimization-patterns (ex. performance)

e Search original ASTs of found patterns for
unoptimized-patterns
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Figure: Optimization pattern (left unoptimized, right
optimized)




ANTI| PATTERNS

Goal: find patterns that negatively influence solutions

e Can also be used to reduce the search space

e Search solution space with low quality for anti-
patterns

e Optional: Search original ASTs to find out It antl
natterns match specific domains



GEN

RIFYING PATTERNS BY
HIERARCHY

e Gl is done with Truffle 3 and Graal
e Operators have a class hierarchy

Figure: Truffle node class hierarchy
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raise hierarchy of literals:

—igure: Finding larger patterns by hierarchy



GENERIFYING PATTERNS BY
WILDCARDS (FUTURE WORK)

e Combine smaller patterns with "brigges
o *=(.*
o =1
e V=01




CONCLUSION

e Successfully used in biasing operators
o Still early stage
e Currently restricted to trees, due to SLEUTH



OUTLOOK

e Empirical study for energy consumption patterns
= planned @GPCE 2019

e Extending wildcard patterns
e Your feedback here



QUESTIONS?
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