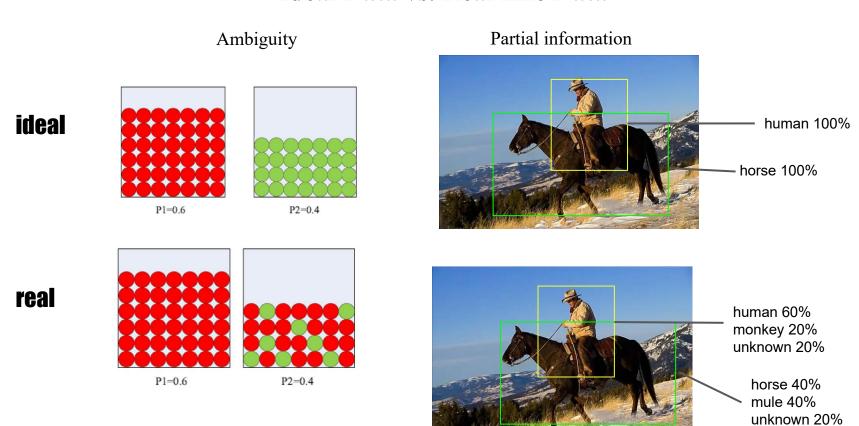
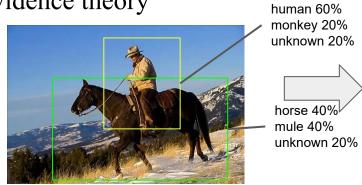
Leveraging Fuzzy System to Reduce Uncertainty of Decision Making in Software Engineering Automation

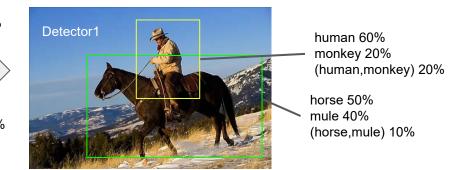
Yueke Zhang

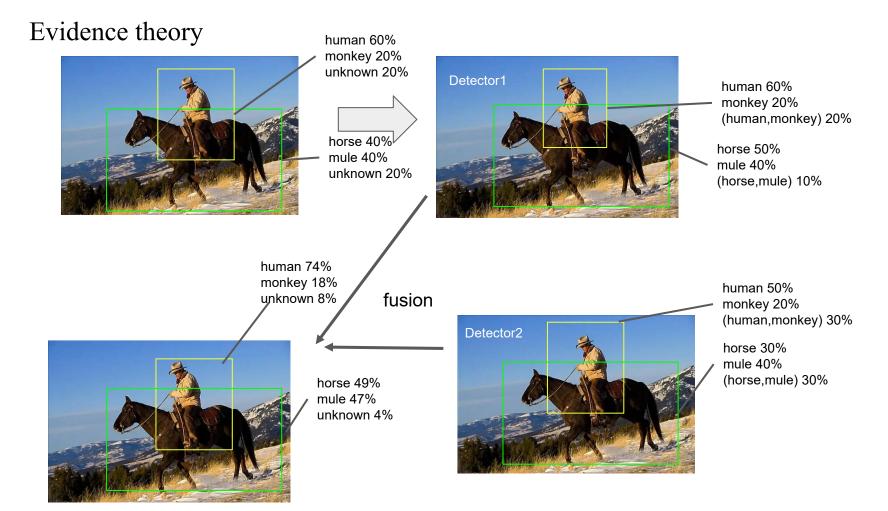
Yu Huang

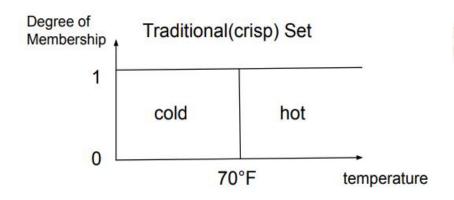

Southwest University

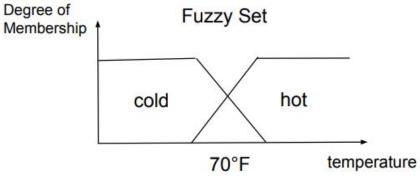
Vanderbilt University






Ideal Data vs. Real Life Data

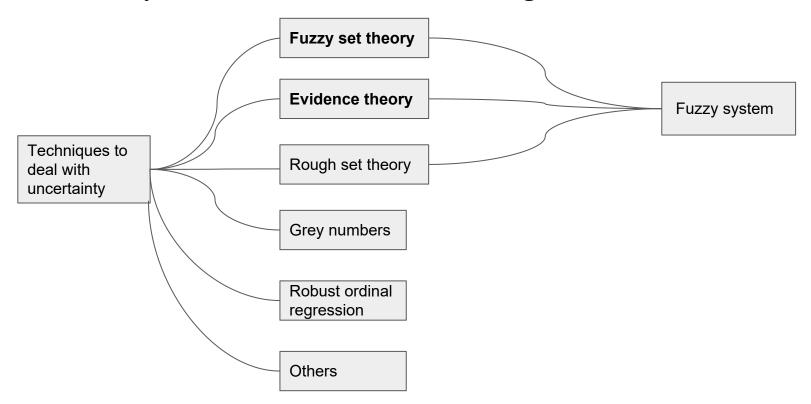

Evidence theory



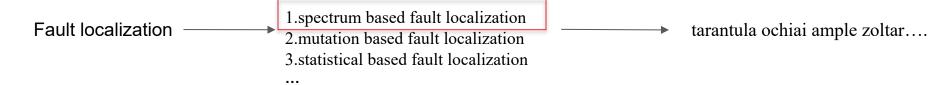
The fuzzy set theory

For 70°F m(cold)=1 or m(hot)=1

m(cold)=0.5 m(hot)=0.5


For 60°F

For 70°F


m(cold)=0.4 m(hot)=0.6

m(a) means membership of a

What is fuzzy based uncertain decision making?

Fault localization and its decision-making process

Fault localization and its decision-making process

Fault localization

1.spectrum based fault localization
2.mutation based fault localization
3.statistical based fault localization
...

$$ochiai(e) = \frac{failed(e)}{totalfailed \times (failed(e)) + passed(e)}$$

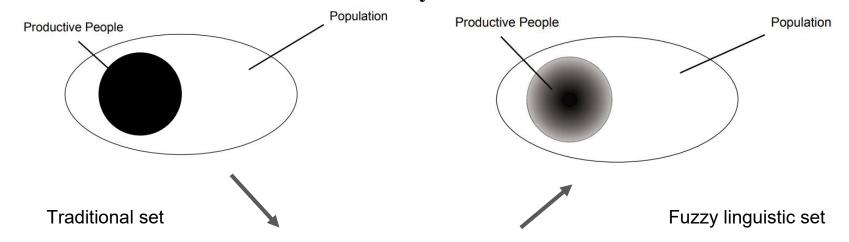
$$ample(e) = \left| \frac{failed(e)}{totalfailed - failed(e)} - \frac{passed(e)}{totalpassed - passed(e)} \right|$$

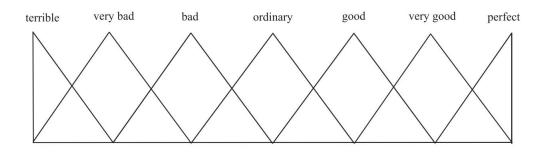
$$tarantula(e) = \frac{failed(e) \times totalpassed}{failed(e) \times totalpassed + passed(e) \times totalfailed}$$

$$A decision with three opionions$$

Ochiai vs. Ample (Exam score)

	Ochiai	Ample		
Math 1	0.004	0.026		
Math 14	0.207	0.024		
Math 19	0.013	0.016		
Math 23	0.105	0.087		
Math all	0.117	0.122		
defects4j v.1.1.0	0.099	0.104		


Different SBFL formulas in FL


$$\mathsf{DM1} \ \, \mathit{ochiai}(e) = \frac{\mathit{failed}(e)}{\mathit{totalfailed} \times (\mathit{failed}(e)) + \mathit{passed}(e)}} \qquad \mathsf{DM2:} \ \, \mathit{ample}(e) = \left| \frac{\mathit{failed}(e)}{\mathit{totalfailed} - \mathit{failed}(e)} - \frac{\mathit{passed}(e)}{\mathit{totalpassed} - \mathit{passed}(e)} \right| \\ m(\mathit{buggy}) = \mathit{norm}(\mathit{ochiai}(e)) \\ m(\mathit{unknown}) = 1 - \mathit{m}(\mathit{buggy}) \\ m(\mathit{unknown}) = 1 - \mathit{m}(\mathit{buggy}) \\ \hline \textit{Combination Rule} \\ \hline \textit{Final m}(\mathit{buggy})$$

A fusion example

Line #	Line of Code	Och	iai	Ample	Zoltar	Fuzzy
1	<pre>currentEvent.stepAccepted(eventT, eventY);</pre>	0.75	(113)	0.48 (366)	0.53 (124)	0.94 (124)
2	<pre>isLastStep = currentEvent.stop();</pre>	0.75	(122)	0.48 (362)	0.53 (114)	0.94 (126)
3	for (final StepHandler handler: stepHandlers) {	0.75	(121)	0.48 (370)	0.53 (121)	0.94 (131)
4	<pre>handler.handleStep(interpolator, isLastStep);}</pre>	1.00	(13)	0.54 (187)	1.00 (13)	1.00 (6)
5	<pre>if (isLastStep) {</pre>	0.75	(95)	0.48 (390)	0.53 (95)	0.94 (105)
6	System.arraycopy(eventY, 0, y, 0, y.length);	0 (8	8283)	0.08 (7518)	0 (8283)	0.08 (7531)
7	<pre>for (final EventState remaining : occuringEvents) {</pre>	0 (8	8293)	0.08 (7519)	0 (8293)	0.08 (7529)
8	<pre>remaining.stepAccepted(eventT, eventY); }</pre>	0 (8	8269)	0.01 (7750)	0 (8269)	0.01 (7761)
	Exam Score		0.41	0.39	0.41	0.38
	•	\			↓	
	Buggyline Exa	ım Sc	ore	Rar	nk in code	sinppet

Other insights: importing fuzzy theory in human study

Challenge and Opportunities

Modeling Measure uncertainty in domain knowledge

Computational overhead

The computational cost of fusion rule is negligible, but we require different information sources.

Evaluation

Golden standard Expert decision

Summary

We present the study of importing uncertain decision making tools in SE

- How does uncertain decision making look like?
- How we measure uncertainty in real life data?
- How we model uncertainty in fault localization?
- Insights in other directions in SE

