
Opportunities for Genetic Improvement 
of Cryptographic Code

Yuval Yarom

Joint work with

Chitchanok Chuengsatiansup, Markus Wagner

1



2



3



• Secure

• Efficient

Cryptographic Code - Challenges

Provably 
correct

Leak free

High 
expertise

Hand tuned
Loop unrolling

Assembly 4



Microarchitectural Side Channels

5

Program
History

Cache Execution
Time



Microarchitectural Side Channels

6

Program
History

Cache Execution
Time



• A programming paradigm that mitigates microarchitectural side-channels

• No flow of secrets to
• Branch conditions

• Memory addresses

• Variable-time instructions

• De facto requirement for cryptographic code.

Constant-time Programming

Secret

Secret

7



Large Basic Blocks

Cryptographic code - Opportunity

Secret

Mainstream compilers are not designed for large 
basic blocks

Simplicity is promising for combinatorial search
8



• Search-based code generator

• Currently tested on finite-field operations
• e.g. arithmetic modulo 2255-19

• Input: IR of a basic block from
• Fiat Cryptography (Erbsen et al., IEEE SP 2019)

• LLVM

• Output: X86 assembly

• Approach: Random Local Search

CryptOpt

9



Cryptopt

10



Mutations

11



Bet-and-Run in Action

12



Results

13



• Cryptographic code tends to have 
large basic blocks

• These are good for 
combinatorial search

• CryptOpt uses RLS to optimise 
finite-field operations

• Many more low hanging fruits

Summary

14


