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• Secure

• Efficient

Cryptographic Code - Challenges

Provably 
correct

Leak free

High 
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Hand tuned
Loop unrolling
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Microarchitectural Side Channels
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• A programming paradigm that mitigates microarchitectural side-channels

• No flow of secrets to
• Branch conditions

• Memory addresses

• Variable-time instructions

• De facto requirement for cryptographic code.

Constant-time Programming

Secret

Secret
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Large Basic Blocks

Cryptographic code - Opportunity

Secret

Mainstream compilers are not designed for large 
basic blocks

Simplicity is promising for combinatorial search
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• Search-based code generator

• Currently tested on finite-field operations
• e.g. arithmetic modulo 2255-19

• Input: IR of a basic block from
• Fiat Cryptography (Erbsen et al., IEEE SP 2019)

• LLVM

• Output: X86 assembly

• Approach: Random Local Search

CryptOpt
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Cryptopt
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Mutations
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Bet-and-Run in Action
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Results
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• Cryptographic code tends to have 
large basic blocks

• These are good for 
combinatorial search

• CryptOpt uses RLS to optimise 
finite-field operations

• Many more low hanging fruits

Summary
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