
Checkers:
Multi-modal
Darwinian API
Optimisation
Santanu Kumar Dash (Surrey University), Fan Wu,
Michail Basios, Lingbo Li, Leslie Kanthan (Turing
Intelligence Technology)

Which API/library should we use?

Application

Xml, pdf,
json,

Parsing
Hashing Serialisation

Gui
Rendering

Collection
ApiLogging

The Problem

Performance impact of APIs

● API selection may affect significantly non functional
properties of the code (execution time, memory
consumption, energy consumption)

● Microservices architecture and API-first approach can
help us achieve automatic API replacement

● APIs deprecated (newer APIs may be faster)
● API tuning (some APIs expose parameters for tuning)

“Amazon says that CodeGuru — which
encodes AWS’ best practices — has
been used internally to optimize 80,000
applications, leading to tens of millions
of dollars in savings. In fact, Amazon
claims that some teams were able to
reduce processor utilization by 325%
and lower costs by 39% in just a year.”

https://venturebeat.com

The Problem

https://www.google.com/url?q=https://venturebeat.com/&sa=D&ust=1593808415874000&usg=AFQjCNFYkrVcnLb5IUswHfWmDKk4EHvRWg

import com.fasterxml.jackson.databind.ObjectMapper;

public class Example{

 public void convertToJson(){

 ObjectMapper jsonConv = new ObjectMapper();

 Foo foo = new Foo(1,"first");

 String jsonStr = jsonConv.writeValueAsString(foo);

 }

}

import com.google.gson;

public class Example{

 public void convertToJson(){

 Gson jsonConv = new Gson();

 Foo foo = new Foo(1,"first");

 String jsonStr = jsonConv.toJson(foo);

 }

}

Example: Json Serialisation in Java

The Problem

Performance impact of Json library selection

Source: https://blog.overops.com/the-ultimate-json-library-json-simple-vs-gson-vs-jackson-vs-json/

The Problem

https://www.google.com/url?q=https://blog.overops.com/the-ultimate-json-library-json-simple-vs-gson-vs-jackson-vs-json/&sa=D&ust=1593808416418000&usg=AFQjCNGVO8bC7fvEjTHXe_Lx4PYmRECfPQ

Example: Collection Apis
ArrayList (JCF)

FastList (EC)

List<Integer> integers = new ArrayList<Integer>();
integers.add(1);
integers.add(2);

List<Integer> integers = new FastList<Integer>();
integers.add(1);
integers.add(2);

IntArrayList emptyList = new IntArrayList();
IntArrayList intList = IntArrayList.newListWith(1,2);

Memory optimised

ImmutableList<Integer> list =
 Lists.mutable.with(1,2).toImmutable();

Thread safe

The Problem

Example with API synthesis

RecyclerView

● ListAdapter API which diffs the lists on a background
thread unblocking the main thread

● AsyncListDiffer which does the same task through a
callback

● Low-level DiffUtil class which achieves the same task
on a background thread

Each of the three techniques use a combination of API calls
but are semantically equivalent.

In the RecyclerView model,
several different components work
together to display your data.

The Problem

Searching for equivalent APIs

For every API call site, there are two ways in which potential replacements
can be identified: a) Singular and Compositional replacement

Proposed Framework

Multi Stage API Optimisation

● Identify stage parses the source to identify
locations for target APIs

● Transform stage searches for candidate
replacement amongst API models

● Test phase runs unit and integration tests
on the rewritten code to sanity check the
rewriting

Proposed Framework

Questions?

mike@turintech.ai

