
Genetic improvement: Taking real-world
source code and improving it using

genetic programming

Alexander E.I. Brownlee, Sæmundur Ó. Haraldsson, John R. Woodward

PPSN 2020

● Introduction

● Example: Fixing Bugs

● Getting involved

● Summary and Q&A

Overview

2

Justyna Petke

b

Justyna Petke

What is Genetic Improvement

A wordy definition:
Genetic Improvement is the application of search-based
(typically evolutionary) techniques to modify software

with respect to some user-defined fitness measure.

It’s just GP - BUT starting
with a nearly complete

program
[Wolfgang Banzhaf]

What is Genetic Improvement

GI Improve
Functional
Properties

Improve
non-functional

properties

Automatic
Bug fixing

Feature
Transplantation

‘Grow
and

Graft’

Improve
energy

consumption

Improve
Execution

time
Auto-parallelisation

Improve
memory

consumption

Software
Slimming

Genetic Programming overview

7

mutation crossover

Genetic Programming: GI’s ROOTS
Aim – to discover new programs by telling the computer what we want it
to do, but not how we want it to do it – John Koza
How – we evolve computer programs using natural selection.
Starts from scratch (empty program)
Choose primitives (terminal set/FEATURES and function set)
Choose representation (tree based, graph based, linear e.g. CGP)
Choose fitness function, parameters, genetic operators.

GI forces “the full capabilities of
programming languages”- side
effects, ADFs, LOOPS

Popular Science
● easy to digest articles for non-specialists.

https://theconversation.com/computers-will-s
oon-be-able-to-fix-themselves-are-it-departm
ents-for-the-chop-85632

https://theconversation.com/how-computers
-are-learning-to-make-human-software-work-
more-efficiently-43798

http://www.davidrwhite.co.uk/2014/11/27/ge
netic-programming-has-gone-backwards/

http://www.davidrwhite.co.uk/tag/
genetic-programming/

Competent Programmers Hypothesis
programmers write programs that are almost perfect.

program faults are syntactically small (slip of finger, T/F)

corrected with a few keystrokes. (e.g. < for <=)

GI can find small patches.

Small changes are non-unique (7 lines code, or utter 7 words before
unique)

Plastic Surgery Hypothesis.
the content of new code can often be assembled
out of fragments of code that already exist.

Barr et al. [71] showed that changes are 43% graftable from the exact
version of the software being changed.

The Plastic Surgery Hypothesis: Changes to a codebase contain snippets
that already exist in the codebase at the time of the change, and these
snippets can be efficiently found and exploited.
THE CODE CONTAINS SOLUTIONS – CANDIDATE PATCHES

Representations of PROGRAMS
Natural Representation of CODE

Text files e.g. Program.java is a text file. Saemi.
Abstract syntax tree (AST) – Genprog, Genofix.
Java byte code (also C binaries) [102]

Errors, compile, halting (Langdon - discard)

Objectives
● Functional (logical properties)

● Accuracy e.g. as in machine learning - FLOAT
● Number of bugs – as measured against a set of test cases. BOOLEAN
● New functionality – e.g.

● Non-functional (physical properties)
● Execution time
● Energy (power consumption – peak/average)
● Memory
● Bandwidth

● Multi-objective
● Trade-offs, convex, a set of programs = a single tuneable program

Multi-Objective
● Seems be convex
● – simple argument (see pic)
● Can provide a set of programs
● weighted sum of objectives?
● weight have meaning to user.
●Will there be elbow/knee points?

Slow connections….

GISMOE
The GISMOE challenge:
to create an automated program
development environment in
which the Pareto program surface
is automatically constructed to
support dialog with and decision
making by the software designer
concerning the trade offs present in
the solution space of programs for
a specific programming problem.

EDITS Operators – changes to programs
● Line level
● Single Character level
● Function/module level.
● AST – GIN, Gen-0-fix, genprog,
● Java – machine code – java byte code.

● LIST OF EDITS IS A PATCH.

GI: An example of execution time
optimisation

Start

delay() if a + b < c

INVALID if a == b and b
==c

EQUALATERAL if a==b or b==c

ISOCELES SCALINE

GI: An example of automated bug
fixing

Start

if a + b < c

INVALID if a == b and b
==c

ISOCELES if a==b or b==c

EQUALATERAL SCALINE

System Diagram for Gen-O-Fix

John Woodward (Stirling)

Gen-O-Fix: Abstract Syntax Trees
Main features of framework are
1. Embedded adaptively.
2. Minimal end-user requirements.

Initial source code: location of Scala source code file
containing a function
Fitness function: providing a means of evaluating
the quality of system

3. Source to source transformations
4. Operates on ASTs (i.e. arbitrarily fine).

AST - scala

Gen-O-Fix output

John Woodward (Stirling)

GI Hashcode
Hadoop provides a mapReduce
implementation in Java.
Equals method has to obey contract
(Reflective, Symmetric, Transitive, …)
x.equals(y) implies hashCode(x)==
hashCode(y).
hashCode method is an integer
function of a subset of an object's fields

Some GP Settings
Terminal set is

Field values
Random integers [0, 100]

Function set is
{+, *, XOR, AND}

Fitness function: close to uniform distribution
(uniform distribution is the ideal), over 10,000
instances.

Distribution of Hashcodes

Overview
● Introduction

● Example: Fixing Bugs

● Getting involved

● Summary and Q&A

35

Fixing Bugs and other examples

Saemundur O. Haraldsson
● Fixing bugs
● Making software faster

36

FIXIE Ref.:
EP/S005730/1

Fixing bugs
A real world example of GI in action

37

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin
Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an
overnight success. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test
Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires,
2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007

Janus Manager

● Management system
for rehabilitation

● Web application
○ Python source code
○ >25K LOC

● ~200 users
○ ~40 specialists
○ 150-160 patients

● In use since March
2016

● 60+ bugs
automatically fixed to
date

38

When last user logs out

1. Procedure 2.0
● Sorts and filters the

day’s exceptions

39

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

40

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

41

42

Procedure 3.0

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and structure.

● Produces test cases
3. Procedure 4.0

● Genetic Improvement
● Parallel process on the

server
● Outputs report for

developer

43

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

44

45

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

4 different types of implemented Edits
Primitive types:

● Copy
● Equivalent to:

CTRL+C -> CTRL+V
● Delete

● Almost what you think

46

Composite types:
● Replace

● Copy + Delete
● Swap

● 2x Copy + 2x Delete

Copy

● CTRL+C => CTRL+V
● Applied to whole lines
● Some restrictions on what

lines can be copied
● Identified with regular

expressions

47

Delete

● Adds “#” to beginning of line
● “Comment”

● Applied to whole lines
● Some restrictions on what

lines can be commented out
● Identified with regular

expressions
● Can be reversed for

previously deleted lines
● “Uncomment”

48

Swap

● Copies both lines above each
other

● Then deletes the originals

● Applied to whole lines
● Like for like

49

Replace

● Copies one line above another
● Then deletes that line

50

Replace -- extra

● Deep parameter tuning

● Operator specific replacement
● and numbers too

● From a list of equivalent
operators.

51

A list of edits makes a suggestion

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

52

A list of edits makes a suggestion

53

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

54

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

55

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

56

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

57

Summary

● Real-world example

● Catches inputs that
produce crashes

● Line(-ish) based GI
● 4 types of edits

● Overnight repair

● Developers are the
gatekeepers

Faster
Another example of GI in action

58

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V.
Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness
landscape in a bioinformatics application. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY,
USA, 1521-1528. DOI: https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

The software

59

ProbABEL
● A tool for Genome Wide

Association studies.

● Collection of functions for
regression models

● Written in C and C++

○ 8k LOC

○ 31 files

● Typical execution time
around 8-12 hours

http://www.genabel.org/packages/ProbABEL

30 Million SNPs
10 - 20k people

The GI setup

● Same as before

● Except for the
evaluation

● Mean CPU time from
20 executions

● None compiling and
failing variants are not
discarded

60

Results

61

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

Results

62

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

● Significant on a larger
dataset

○ Still, only about 1 sec
faster

Variant 1
Deletes a single line that
performs an expensive
matrix multiplication

Variant 2
Changes: i++ to ++i

63

Cost of running GI

Gained improvement per execution

Overview

88

● Introduction

● Example: Fixing Bugs

● Getting involved

● Summary and Q&A

Get involved with
GI in No time - or GIN

89

Available at
https://github.com/gintool/gin

v2.0 published in June 2019
“Gin: Genetic Improvement Research

Made Easy” (GECCO 2019)http://www.davidrwhite.co.uk/

(Inaugural paper at
GI@GECCO 2017)

https://github.com/gintool/gin

The inaugural paper
official V2.0 released on 12 June 2019:
https://github.com/gintool/gin/releases

https://github.com/gintool/gin/releases

https://tinyurl.com/giassignment

https://tinyurl.com/giassignment

Genetic Improvement
● Many success stories

● …however, these typically need at GI expert in the loop

● Greater understanding needed of what GI approaches work best and
where (search methods, edit types, target languages, ...)

● What’s needed is a more systematic approach

● A toolkit to enable experimentation

Gin’s Goals
● Remove incidental difficulties of GI for research and teaching

● Enable focus on general questions

● Provide a central tool for the community

● Support more than bug-fixing: non-functional properties

● Work on open-source software projects out-of-the-box

Gin Design

What’s in Gin?
● Implementations of edits for source code
● Evaluate edits: compile and run JUnit tests
● Searches and Samplers
● Test generation (EvoSuite)
● Profiler to identify hot methods (hprof)
● Build tool integration (Maven, Gradle)

Let’s see those in more detail...

95

Vanilla GIN
Version 2.0:

gradle/maven support,
various types of edits,

profiler to find “hot” methods,
various samplers, ...

Vanilla GIN
Version 1.0

Gin v2 Core Classes

● Edits are single changes to source code
● Building blocks of a repair
● Combined into Patches

● Gin supports edits at:
● line level (Langdon) - delete/replace/copy/swap/move
● statement level (GenProg) - delete/replace/copy/swap/move
● constrained (matched) statement - replace/swap
● micro edits

● binary & unary operator replacement (OR ⬄AND) (++ ⬄ --)
● reorder Boolean expressions (X && Y ⬄ Y && X)
● loop and method shortcuts (insert return/break/continue)

Edits

Edits
● We provide many wrappers to make your life easier, so that you can

focus on higher-level tasks:
● “Tell me which lines are eligible for deletion in this method”
● “Delete this line”
● “Give me all the for loop conditions in this method”
● And many more...

Example edits

Disclaimer: this was an old version.
Today, it is a little bit longer, e.g., to
prevent us from replacing statements
within the same parent node.

Patch Evaluation
Gin invokes test
cases via Junit…

Tracks:
● compile success;
● run-time errors,

exception types
● actual &

expected
outcomes

● timing:
wall-clock and
CPU time

102

Gin Compiles and Reloads on-the-fly

Note: If you prefer to use
the more “traditional”
way of writing the file to
disk first - e.g., due to
integration of Gin into
other pipelines - then you
can use a command-line
flag to do so.

DeleteEnumerator

● Included samplers:
● EmptyPatchTester
● RandomSampler
● DeleteEnumerator

● Searches: LocalSearch, GP

● Possible Questions:
● What is the effectiveness of a

given edit type for fixing a
category of bug?

● How robust is the space of
single-line edits, modulo the
given test suite?

● ...

Sampling and
Searching

Sampling
The following is one really wide output file - here of RandomSampler:

Local search

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Finished. Best time: 38744892 (ns), Speedup (%): 97.64, Patch: | gin.edit.line.DeleteLine
examples/triangle/Triangle.java:10 |

Local search, output

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 delay();

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

-bash-4.1$ cat examples/triangle/Triangle.java.optimised
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

Lo
ca

l s
ea

rc
h:

W

ha
t d

id
 w

e
ac

tu
al

ly
 o

pt
im

ise
 h

er
e?

The
problematic
line was
deleted.

Generating tests and Profiling

Build tool integration
● Maven and Gradle API documentation is sparse!

● And many projects seem to break conventions about paths, resources etc.
●Project class wraps most of what we have learned

● provide the classpath for a project
● find a particular source file within a project’s file hierarchy
● provide a standard method signature for a given method
● provide a list of project tests
● run a unit test given its name

● Gin can infer the necessary classpath and dependencies for running
unit tests from a Maven or Gradle project, or these can be specified
manually

● Maven projects can be updated automatically with new unit tests
from EvoSuite

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv
● PatchSampler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.PatchSampler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.PatchSampler_LINE_output.csv -editType LINE -patchNo 100

● Generate tests
java -cp build/gin.jar gin.util.TestCaseGenerator -projectDir ../casestudies/RxJava
-projectName RxJava -evosuiteCP libs/evosuite-1.0.6.jar -generateTests -classNumber 3
-projectTarget ../casestudies/RxJava/build/classes/java/main

Examples with jCodec (maven
project)

Gin
● Available at https://github.com/gintool/gin

● The team actively uses Gin to push
the GI boundaries, and quite a few
papers are in the works.

● Open for contributions!
● Particularly new edits and tools
● https://github.com/gintool/gin
● we’d like this to become the MiniSAT of GI

Comments/questions: Sandy (Alexander E.I. Brownlee) sbr@cs.stir.ac.uk

https://github.com/gintool/gin
https://github.com/gintool/gin
mailto:sbr@cs.stir.ac.uk

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

120

Genetic Improvement
vs

Genetic Programming
Start from an existing program
BLOAT? – interpretation?
NO function / terminal set
Improvement of non-functional properties.
Easier to write grants
Different benchmarks.
Population of edits NOT programs.

PUTTING IT ALL TOGETHER
● Let’s start with existing programs. Not like standard GP.
● Python vs C vs Java? Amenable to GI? Most popular
● Benchmarking ???
● Population of edits, not programs
● GP applied to real software

● Large, loops, side-effect, modules,…
● Non functional properties

Questions?

Saæmundur (Saemi) Haraldsson <soh@cs.stir.ac.uk>
John Woodward <j.woodward@qmul.ac.uk>

Alexander (Sandy) Brownlee <sbr@cs.stir.ac.uk>

123

mailto:soh@cs.stir.ac.uk
mailto:j.woodward@qmul.ac.uk
mailto:sbr@cs.stir.ac.uk

Bibliography
S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI:
https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V. Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE Symposium
on Computers and Communications (ISCC), Heraklion, 2017, pp. 242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K. Siggeirsdottir, "Predicting changes in quality of life for patients in vocational rehabilitation," 2018 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson, E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016. Determinants of
outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI: https://10.3233/WOR-162436

124

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

J. Petke, B. Alexander, E.T. Barr, A.E.I. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.I. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: https://doi.org/10.1145/3321707.3321841

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’.
In Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA,
207–215. DOI: https://doi.org/10.1145/3286978.3287014

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.org/abs/2004.04500v1

M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a
proof-of-concept’. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL:
https://doi.org/10.1145/3067695.3082519

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:
https://doi.org/10.1109/CEC.2019.8790246

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software
Engineering, Springer. Published 22 April 2020. DOI: https://doi.org/10.1007/s10664-020-09808-9

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341–352. DOI: https://doi.org/10.1145/3196398.3196442

125

https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3286978.3287014
https://arxiv.org/abs/2004.04500v1
https://doi.org/10.1145/3067695.3082519
https://doi.org/10.1109/CEC.2019.8790246
https://doi.org/10.1007/s10664-020-09808-9
https://doi.org/10.1145/3196398.3196442

