
Better Code Search and Reuse for
Better Program Repair
Qi Xin

Georgia Institute of Technology
Atlanta, GA, USA
qxin6@gatech.edu

Steven P. Reiss
Brown University

Providence, RI, USA
spr@cs.brown.edu

Abstract—A branch of automated program repair (APR) tech-
niques look at finding and reusing existing code for bug repair.
ssFix is one of such techniques that is syntactic search-based: it
searches a code database for code fragments that are syntactically
similar to the bug context and reuses such code fragments to
produce patches. The keys to its success lie in the approaches
it uses for code search and code reuse. We investigated the
effectiveness of ssFix using the Defects4J bug dataset and found
that its code search and code reuse approaches are not truly
effective and can be significantly improved. Motivated by the
investigation, we developed a new repair technique sharpFix
that follows ssFix’s basic idea but differs significantly in the
approaches used for code search and code reuse. We compared
sharpFix and ssFix on the Defects4J dataset and confirmed
through experiments that (1) sharpFix’s code search and code
reuse approaches are better than ssFix’s approaches and (2)
sharpFix can do better repair. sharpFix successfully repaired a
total of 36 Defects4J bugs and outperformed many existing repair
techniques in repairing more bugs. We also compared sharpFix,
ssFix, and four other techniques on another dataset Bugs.jar-
ELIXIR. Our results show that sharpFix did better than others
and repaired the largest number of bugs.

Index Terms—automated program repair, code search, code
reuse

I. INTRODUCTION

An automated program repair (APR) technique can sig-
nificantly save people time and effort by repairing a bug1

automatically. Taking as input a faulty program and a fault-
exposing test suite that the program failed, such a technique
automatically modifies the faulty program and can produce
a patched program that passes the test suite. A branch of
APR techniques [1]–[5] adopt a search-based approach for
patch generation: they define a space of patches generated
from applying a pre-defined set of modifications on a set of
suspicious locations of the faulty program identified by fault
localization techniques [6], and then search in the space for a
correct patch. The search space is often huge, and finding a
correct patch within it is difficult [7].

To address the search space problem, one idea is to reuse
existing code from existing programs [8], [9]. Through reusing
such code, a repair technique avoids generating a large amount
of artificial code to mitigate search space explosion. The recent
technique ssFix [10] was built upon the idea. It performs
syntactic code search to find existing code fragments (the

1In this paper, we use “bug” and “fault” interchangeably.

candidates) that are similar to the bug context (the target) from
a code database and reuses those code fragments to produce
patches for bug repair. ssFix leverages the syntactic differences
between the target and each candidate to produce patches. For
a candidate that is similar to the target, the differences are
small, and the search space is reduced.

The keys to ssFix’s success lie in the approaches it uses for
code search and code reuse. After investigating their effec-
tiveness using the Defects4J bug dataset [11], we found that
its approaches are not truly effective and can be significantly
improved. ssFix’s code search uses a target that contains the
local context of the faulty statement as query (three statements
as most) and searches for candidates that are of comparable
sizes. It uses the same method for searching candidates from
the local program (or the local search) and from the external
repository (or the global search). This type of code search
is inflexible: we empirically found that (1) for local search,
it needs less context to find candidates related to the faulty
statement itself, and for global search, it needs more context
to find candidates related to the target method (the enclosing
method of the target); and that (2) different methods should
be used for the two types of search. For code reuse, ssFix uses
three steps: code translation, code matching, and modification
to generate patches. Its code translation translates a candidate
by finding variable, method, and type identifiers used in the
candidate that are related to those used in the target and then
renaming the candidate identifiers. Identifying two identifiers
as related or not is only based on their usage contexts (the
enclosing expressions and statements) which is not enough;
Its code matching is based on a tree matching algorithm
with a list of matching rules and arbitrary thresholds used
and is inflexible. Its modification can lead to a large set of
patches generated as it involves modifying not only the faulty
statement itself but also its context. Validating those patches
however is expensive.

To address these problems, we developed a new APR
technique sharpFix which follows ssFix’s basic repair idea
but uses different approaches for code search and code reuse.
sharpFix uses different forms of target and candidate and
different search methods for doing local and global search.
Its code reuse uses different and improved methods for code
translation, code matching, modification, and patch validation
to address the problems mentioned above. The technical

Fig. 1. An Overview of sharpFix

differences are non-trivial and actually lead to better code
search, code reuse, and repair abilities that sharpFix has over
ssFix. We confirmed these through our experiments using the
Defects4J bug dataset. The results show that sharpFix repaired
a total of 36 bugs with correct patches generated. We also
compared sharpFix, ssFix, and four existing APR techniques:
jGenProg [12], jKali [12], Nopol (version 2015) [13], and
HDRepair [14] on another dataset: Bugs.jar-ELIXIR. The
results show that sharpFix outperformed all these techniques
and confirm again that sharpFix is an improvement over ssFix.

In this paper, we make the following contributions:
• A new APR technique sharpFix that finds and reuses

existing code for automatic bug repair.
• An implementation of sharpFix (code available at

https://github.com/sharpFix18/sharpFix).
• An evaluation of sharpFix on two bug datasets that shows

sharpFix is an improvement over ssFix and outperforms
four other repair techniques.

II. OVERVIEW

Figure 1 shows an overview of sharpFix’s repair process.
sharpFix takes in a faulty program and a fault-exposing test
suite, and automatically generates as output a patched program
that passes the test suite (or nothing if it cannot find one). The
repair process is done in three stages: (1) fault localization, (2)
code search, and (3) code reuse. For fault localization, it uses
ssFix’s approach that leverages the spectrum-based technique
GZoltar [15] to identify a list of suspicious statements that are
likely to be buggy. Each statement is associated with a score
ranged from 0 (non-suspicious) to 1 (highest-suspicious) that
represents the likelihood of being buggy. The statements are
ranked by scores from high to low. sharpFix next looks at
each suspicious statement independently to produce patches
for it. With a suspicious statement as the target, in the
second stage, sharpFix does code search to find statements
as the candidates from both the local faulty program and an
external code repository. These candidates are ranked based
on their syntactic similarities with the target and the syntactic
similarities between their contexts and the target’s context.
sharpFix looks at each candidate independently to produce
patches for the target. In the third stage, sharpFix translates
the candidate and its context by renaming the used variable,
type, and method identifiers, matches code between the target
and the translated candidate, produces patches for the target
using the translated code, and validates the patches using the
test suite. It reports as output the first validated patch whose
corresponding patched program passes the test suite.

We will use the Defects4J bug M69 (Figure 2) as an example
to explain how sharpFix works. For this bug, the developer

1 double r=correlationMatrix.getEntry(i, j);
2 double t=Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));
3 - out[i][j]=2 * (1 - tDistribution.cumulativeProbability(t));//target
4 + out[i][j]=2 * tDistribution.cumulativeProbability(-t);

Fig. 2. The M69 Bug and its Developer Patch
1 degreesOfFreedom=df(v1, v2, n1, n2);
2 distribution.setDegreesOfFreedom(degreesOfFreedom);
3 return 2.0 * distribution.cumulativeProbability(-t); //candidate
4 //return 2.0 * tDistribution.cumulativeProbability(-t); //translated

Fig. 3. A Code Fragment from the Bug’s Local Program

patch changed the statement from line #3 to line #4 for
calculating the correct matrix of p-values associated with a null
hypothesis for Pearsons Correlation. For this bug, sharpFix’s
fault localization identified the statement at line #3 as the target
for repair. The statement is ranked as No. 10.

III. METHODOLOGY

In this section, we first elaborate on sharpFix’s code search
and code reuse approaches and then summarize the technical
differences between sharpFix and ssFix.

A. Code Search

In the code search stage, sharpFix takes in the target and
does code search to generate as output a list of candidates. It
uses different search methods to do local search and global
search and merges the results.

For local search, sharpFix uses the target as the query code
chunk. It does not use a larger code chunk as we found that
a larger chunk that contains more context is more likely to
be unique in the local program. For local search, sharpFix
compares the target with every single statement as candidate
in the faulty program. It calculates a score by comparing
the tokens extracted from the names of variables, types, and
methods used in the two statements to measure their syntactic
similarity. To extract tokens from a statement, sharpFix first
creates a list containing the original names of the variables,
types, and methods used in the statement. It next looks at each
name and splits it by camel-cases, underscores, and numbers.
It further does stemming on these splitted tokens using the
Porter Stemming algorithm [16]. Finally, it transforms each
token in the list into lower-case. We call the tokens extracted
as such the search tokens2. As an example, we show below
the search tokens (in angle brackets) extracted from the target
in Figure 2.

<out>,<i>,<j>,<tdistribution>,<t>,<distribution>
<cumulativeprobability>,<cumulative>,<probability>,<t>

With the lists of search tokens extracted from the target and
the candidate, sharpFix calculates the Dice Similarity3 of them
as the score. sharpFix finally ranks the candidates by the
calculated scores as the local search result.

For global search, sharpFix uses a different search method.
It first finds Java methods from the code repository that
are similar to the enclosing Java method of the target, or

2We compared in total three types of tokens in [17] (Section IV-B1).
3The original measure is used for sets. We slightly changed it to be used

for lists.

the target method, using a search method similar to ssFix’s.
The differences are that here sharpFix uses Java methods
as the query code chunks and uses three as the k-value
for generating k-grams4. For each retrieved Java method m,
sharpFix calculates a score s for it. sharpFix does not simply
report these Java methods as the search results: a method can
be big and reusing it can lead to too many patches generated.
So instead, sharpFix uses its local search method to identify
as candidates statements in m that are most similar to the
target (it currently identifies two of such statements from m).
Each such statement is associated with the retrieval score s.
sharpFix finally ranks the candidates as the global result.

sharpFix merges the search results by first normalizing the
scores of the candidates retrieved by local search and by global
search separately and then ranking them all together. It selects
the top-200 candidates as the code search output. For the target
at line #3 of Figure 2, sharpFix did code search and retrieved
a candidate from the local faulty program shown at line #3 of
Figure 3. The rank of the candidate is No. 2.

B. Code Reuse

In this stage, sharpFix reuses each candidate retrieved in the
previous stage independently to repair the target. This is done
in four steps: code translation, code matching, modification,
and patch validation.

1) Code Translation: As the first step, sharpFix translates
the candidate by renaming variable, type, and method identi-
fiers used in the candidate and its context, i.e., the enclosing
method. Without doing so, it would often fail to directly
transfer code from the candidate and its context to the target
program for repair as there can be undeclared identifiers. The
translation is done in three steps: (1) collecting identifiers in
the candidate program and those in the target program, (2)
identifying candidate and target identifiers that are related,
and (3) renaming candidate identifiers as their related target
identifiers.

For (1), sharpFix collects a list of candidate identifiers, or
cids, as the variable, type, and method identifiers used in the
candidate’s enclosing method. An identifier we mention here
is actually an identifier binding that represents for example a
variable declaration and its use. sharpFix collects all identifiers
in the candidate method scope since it may reuse code in that
scope to produce patches. sharpFix collects a list of target
identifiers, or tids, as the variable, type, and method identifiers
used in the target’s enclosing method and other identifiers that
are accessible in the method: the declared field and method
names in the target’s enclosing class and the class name.

For (2), sharpFix creates a mapping that maps each cid to a
tid identified as related. This is done in four steps: (a) it first
maps cids to tids that share the same names that are not too
short, i.e., with at least three characters; (b) if the candidate’s
enclosing method name cid is used in the method body and is
unmapped, sharpFix maps it to the target’s enclosing method

4To determine this, we compared several search methods in [17] (Section
IV-B1).

name tid; (c) if the candidate’s enclosing class name cid is
used in the method body and is unmapped, sharpFix maps it
to the target’s enclosing class name tid; (d) sharpFix maps an
unmapped cid to the tid that has most similar usage contexts;
and (e) sharpFix maps an unmapped cid to the tid that shares
the largest number of conceptual tokens extracted from their
names measured by the Dice Similarity. For (c), an identifier’s
usage contexts are its parental expressions and statements
in the AST structure. sharpFix compares the parameterized
strings of two identifiers’ usage contexts using ssFix’s method
(III-A(2) of [10]). The only difference is here sharpFix takes
into account the results from (a) and (b): it does not param-
eterize the mapped identifiers from (a) and (b) for generating
a usage context’s parameterized string. As an example, one
usage context of tDistribution is the method call at
line #3, and the parameterized string sharpFix generates is
v.cumulativeProbability(v). Note the method
name is mapped in (a) and is not parameterized. For (d), to
extract conceptual tokens, sharpFix first generates the search
tokens (from Section III-A), and then filters away tokens that
are Java keywords, stop words, too-short, and too-long (less
than three and greater than 32 characters). Note that sharpFix
checks the compatibility of two identifiers to make sure a
variable cid is not mapped to a method tid for example. After
a mapping is created, for (3), sharpFix simply renames a cid
to its mapped tid.

For our example, sharpFix renames distribution (Fig-
ure 3, line #3) as tDistribution (Figure 2, line #3). The
former is mapped to the latter due to a common conceptual
token distribution they share.

2) Code Matching: sharpFix does not arbitrarily transfer
code from candidate to target to produce patches: it does
code matching in this step to match related statements and
expressions from the target and the translated candidate, and
in the next step it performs modifications based on the matched
statements and expressions to produce patches.

sharpFix’s code matching is based on comparing the search
tokens (defined in Section III-A) and symbols (e.g., +) that it
extracts from statements and expressions. We call the search
tokens and symbols together the match tokens. We call the
target tchunk and the translated candidate cchunk. For code
matching, sharpFix accepts tchunk and cchunk as input. As
output, it produces a code mapping that maps each statemen-
t/expression in tchunk to its matched statement/expression
in cchunk. To create such a mapping, sharpFix starts by
collecting two lists of statements and expressions tses and
cses from tchunk and cchunk respectively (by visiting the
ASTs). The collected expressions are non-trivial and do not
include identifiers, number constants, or any of the four types
of literals: boolean, null, character, and string. For each
statement/expression tse in tses, sharpFix finds a cse in cses
that is compatible and shares the most match tokens with tse
(measured by the Dice Similarity) and maps tse to cse.

When two ses (statements/expressions) are both statements,
they are compatible if they are both loops. Otherwise, they

need to have the same statement type5 (e.g., both return
statements) to be compatible. When two ses are both ex-
pressions, they are compatible if their expression types are
equal. When one se is a statement and the other is an
expression, they are only compatible if the statement’s type
is VariableDeclarationStatement and the expression’s type is
either Assignment or VariableDeclarationExpression.

For the bug example, sharpFix maps the right-hand side of
the target to the returned expression of the translated candidate.
The extracted match tokens and the similarity calculation are
shown below.

Matched tokens from target (16 in total):
<2> <*> <(> <1> <-> <tdistribution> <t> <distribution> <.>
<cumulativeprobability> <cumulative> <probability> <(> <t> <)> <)>

Matched tokens from translated candidate (13 in total):
<2.0> <*> <tdistribution> <t> <distribution> <.>
<cumulativeprobability> <cumulative> <probability> <(> <-> <t> <)>

Overlapped tokens (11 in total):
<*> <tdistribution> <t> <distribution> <.> <cumulativeprobability>
<cumulative> <probability> <(> <t> <)>

Dice Similarity: (2*11)/(16+13)=0.759

3) Modification: sharpFix uses four modifications: state-
ment/expression replacement, method replacement, statement
insertion, and adding if-guard to transfer code from the can-
didate and its context to the target and its context to produce
patches. It leverages ssFix’s method for doing statement/ex-
pression replacement based on the matching result yielded in
the previous step. If a statement/expression se from the target
is mapped to a statement/expression se′ from the candidate,
sharpFix replaces se with se′ to yield a patch. Note that it can
yield more patches by replacing the components of se with
those of se′. For method replacement, sharpFix replaces the
target’s enclosing method with the translated candidate’s en-
closing method to support making multiple changes within the
method scope. For insertion, sharpFix looks at the translated
candidate s′ to which the target s is mapped, identifies the
two neighboring statements of s′ in its block: s′0 and s′1 that
are before and after s′, and inserts s′0 before s and s′1 after
s to yield two patches. To produce patches using adding if-
guard, sharpFix looks at the target s and its mapped candidate
s′. If the parent of s′ is an if-statement with a condition e′,
sharpFix creates new if-statements using the condition e′ to
guard s and other statements. Currently, sharpFix selects two
sets of statements to be guarded: (1) s itself and (2) s plus the
following statements its block.

For the bug example, sharpFix replaced the right-hand side
of the target with the returned expression of the translated
candidate to produce the correct patch.

4) Patch Validation: In the previous step, sharpFix does
modification to generate patches. In this step, it validates
the generated patches. To do this, sharpFix first removes
patches that are syntactically duplicated and have already been
validated before (from using other candidates). It next follows
ssFix’s approach to sort the patches by their sizes to possibly
avoid reporting an overfitting patch [19], [31]. sharpFix next
validates each sorted patch: It first applies the patch on the

5The type of a statement/expression is its node type in the abstract syntax
tree that sharpFix builds using the Eclipse JDT library [18].

faulty program to generate a patched program; then does static
analysis using S6’s method [20] to check whether the patched
program can be resolved (to see for example whether it uses
undeclared variables); then compiles the resolved program;
and finally runs it against the test suite. sharpFix reports
the first validated patch whose patched program passes the
test suite. Such a patch is called a plausible patch [23]. For
our example, sharpFix reported as output the correct patch
generated in the previous step.

C. Technical Differences Between sharpFix and ssFix

We next summarize the technical differences between the
two techniques.

Code Search: ssFix uses the same form of code chunks
for local and global search. The used code chunks contain
at most three statements. sharpFix uses different forms of
code chunks. For local search, it uses code chunks containing
single statements, and for global search, it uses code chunks
containing Java methods. ssFix uses the same search method
for local and global search. The method sharpFix uses for
local search is based on the extracted search tokens and is
significantly different from ssFix’s method. For global search,
it reuses ssFix’s method for finding Java methods from the
code repository. It further uses its local search method for
finding statements within the retrieved Java methods.

Code Translation: the main differences lie in the ap-
proaches the two techniques use for finding related identifiers
between the candidate and the target. ssFix finds identifiers
only within the scope of the two chunks, and identify related
identifiers by their usage contexts. sharpFix finds identifiers
within a larger scope: the enclosing methods (and classses)
of the two chunks. The used approach for identifying related
identifiers is more complicated: it not only compares two iden-
tifiers’ usage contexts but also their compatibility, locations,
names, lengths, and tokens extracted from their names.

Code Matching: ssFix uses a tree matching algorithm with
non-trivial matching rules and human-created thresholds. This
makes its code matching inflexible. For example, it does not
allow two method calls to match unless the method names are
identical, and this can hinder it from repairing an incorrect
method call. sharpFix’s code matching is based on token
matching. It uses siginificantly simplified matching rules with
no thresholds.

Modification & Patch Validation: For modification, ssFix
uses statement/expression replacement, statement insertion,
and statement deletion. sharpFix adds two new modifications:
adding if-guard and method replacement. sharpFix does not
do statement deletion as it was shown in [10] to be likely to
produce defective patches. sharpFix uses ssFix’s statement/ex-
pression replacement but modifies ssFix’s statement insertion.
This is because the target and candidate sharpFix uses both
contain single statements. For patch validation, compared to
ssFix, sharpFix performs static analysis as an additional step
to identify invalid patches. sharpFix works more efficient by
using such a step to filter away invalid patches without actually
compiling them.

For the bug example, in the code search stage, ssFix
produced code chunks including the target and the candidate
statements with more contexts. Doing code search using such
chunks, ssFix failed to find any code fragment that is useful
for repair like the one in Figure 3. Even if ssFix could find that
code fragment, it would still fail to generate the good trans-
lation by renaming distribution as tDistribution:
comparing their usage contexts would not work in this case.
Due to such failures, ssFix finally produced no patch.

IV. EVALUATION

We compared sharpFix and ssFix on the Defects4J dataset
[11]. The results showed that, compared to ssFix, sharpFix
has better code search, code reuse, and repair abilities. On
the Defects4J dataset, sharpFix produced correct patches for
36 bugs, whereas ssFix only produced correct patches for 22
bugs. We also compared sharpFix against ssFix and four other
repair techniques (jGenProg, jKali, Nopol, and HDRepair) on
Bugs.jar-ELIXIR [21], a dataset of 127 real Java bugs. The
results show that sharpFix outperformed all these techniques.

A. Fix Ingredient Experiment

To evaluate sharpFix’s and ssFix’s code search and code
reuse, we conducted a fix ingredient experiment to see whether
the fix code exists for a bug. We identified a total of 103
Defects4J bugs whose developer patches (available from the
dataset) are simple, i.e., all the fixing changes are made within
an expression or a primitive statement that has no children
statements. For a simple patch, we defined six types of fix
ingredients. And for each of the 103 bugs, we identified the
fix ingredient and checked whether it exists in a code database
that consists of the local faulty program and a code repository
for which we used the DARPA MUSE repository [22] that
contains 66,341 Java projects (about 81 GB). More details can
be found in [17]. Our results show that (1) for 50 (48.5%) of
the 103 bugs, we retrieved the exact fix ingredients from the
code database and (2) for 80 (77.7%) bugs, we retrieved fix
ingredients in the parameterized forms. For parameterization,
we replaced program-specific (non-JDK) variables, types, and
methods with special symbols. We used the results as truths
for the code search and code reuse experiments.

B. Code Search Comparison

For evaluation, we ran sharpFix’s and ssFix’s code search
to see for how many of the 103 bugs, they can effectively
retrieve candidate chunks containing the fix ingredients that
we identified. We call a candidate chunk (possibly after
translation) that contains the fix ingredient in its exact form
promising. Our results show that sharpFix and ssFix retrieved
promising candidate chunks within the top-200 results for 42
and 37 bugs respectively.

a) Experiment: For each of the 103 bugs, we provided
sharpFix with the faulty statement, ran its code search to
retrieve a list of candidate statements from the code database,
performed its translation to translate a candidate’s enclosing
method, and produced a code chunk. The code chunk includes

32
35

37
39

41 42

0

5

10

15

20

25

30

35

40

45

Top-50 Top-100 Top-200

SSFIX SHARPFIX

Fig. 4. The Retrieval of Promising Candidate Chunks that Contain the Fix
Ingredients (Columns show the number of bugs for which promising candidate
chunks were retrieved)

the candidate statement, its two neighbouring statements (used
for insertion), and the enclosing if-condition (used for adding
if-guard) if the enclosing statement is an if-statement. We then
checked whether the code chunk is promising. To evaluate
ssFix’s code search, for each bug, we provided ssFix with
the faulty statement, ran its code search to retrieve a list of
candidate chunks each containing at most three statements,
performed its translation to translate each chunk, and checked
for promising chunks. For ssFix, we used the same five
projects used in [10] as the local programs. For sharpFix, the
local programs are the faulty programs for the 103 bugs. The
code repository we used is the DARPA MUSE repository. For
both experiments, we filtered away candidate chunks that are
syntactically duplicated (they would be given the same rank)
and those that are simply from the bug-fixed versions. We
looked at the top-200 chunks as the retrieval results.

b) Result: Figure 4 shows the numbers of promising
candidate chunks sharpFix and ssFix retrieved within the top-
k results (with k being 50, 100, or 200). Within the top-
200 results, sharpFix retrieved in total 59 chunks that contain
the fix ingredients in the parameterized forms, among which,
42 are promising, i.e., contain the exact fix ingredients after
translation. Our fix ingredient experiment shows that for as
many as 80 bugs, the fix ingredients in the parameterized
forms exist. So sharpFix retrieved promising fix ingredients for
42/80=52.5% bugs. We found that ssFix retrieved promising
candidate chunks for 37 bugs, and it retrieved promising fix
ingredients for 37/80=46.3% bugs. Compared to ssFix’s code
search, sharpFix’s code search retrieved five more promising
candidate chunks within the top-200 results, and it retrieved
39 promising chunks within the top-50 results which are more
than all the promising chunks ssFix retrieved within the top-
200 results.

Our results show that sharpFix’s code search is better:
It retrieved promising candidate chunks that contain
the exact fix ingredients for 52.5% bugs while ssFix
retrieved promising candidate chunks for 46.3% bugs.

C. Code Reuse Comparison

To evaluate sharpFix’s and ssFix’s code reuse, we wanted
to see how many of the retrieved candidate chunks that
contain fix ingredients can be successfully reused by the

two techniques for producing correct patches. To do this,
for sharpFix, we looked at the 59 bugs for which sharpFix
retrieved candidate chunks that contain the parameterized fix
ingredients. For each such bug, we provided sharpFix with
the target and the retrieved candidate (the statements), and ran
its reuse automatically. If sharpFix produced a plausible patch,
we manually checked whether the patch is correct. Our results
show that sharpFix produced 30 plausible patches which are all
correct. It successfully reused 30/59=50.8% candidate chunks.

The exact fix ingredients (without any translation) are
contained in 39 candidate chunks, and we expect sharpFix
to be able to reuse those fix ingredients in producing the
correct patches. For the other 20 (59-39) chunks which only
contain the fix ingredients in the parameterized forms, we
identified only three chunks that can be reasonably reused
for repair: it may not be reasonable for a repair technique
to translate an arbitrary, parameterized fix ingredient into the
exact one to be reused for repair. We analyzed sharpFix’s
failures in reusing the chunks for repairing the 12 (39+3-30)
bugs and found that the candidate chunks, though containing
the fix ingredients, are not ideal for repairing 9 bugs. As
an example, for the bug Cl92, the target statement int
indexOfDot = namespace.indexOf('.') to be re-
paired uses the incorrect method call indexOf. sharp-
Fix found the candidate statement as a while-loop contain-
ing the fix ingredient namespace.lastIndexOf('.')
(after translation) in the loop body, but it also uses
namespace.indexOf('.')>0 as the loop condition.
In reusing the candidate for repair, by code match-
ing, sharpFix matched the incorrect method call in the
target statement with the loop condition in the candi-
date statement and therefore missed the opportunity of
reusing namespace.lastIndexOf('.') to repair the
bug. Though it is possible to make sharpFix’s code matching
more sophisticated, we think a better solution for this case is
to find a better candidate statement that contains the correct
method call like the statement in the loop body. So we
consider the candidate chunk as not ideal for this case. To
successfully reuse the candidate chunks to repair the other 3
bugs, sharpFix’s modification needs to be more sophisticated.

For comparison, we also evaluated ssFix’s code reuse. By
code search, ssFix retrieved 57 candidate chunks that contain
parameterized fix ingredients. For each of the 57 bugs, we
provided ssFix with the retrieved candidate chunk and ran
its code reuse. Our results show that ssFix produced 25
plausible patches among which 23 are correct. It successfully
reused 23/57=40.4% candidate chunks. We found the exact
fix ingredients are contained in 37 chunks. For the other 20
(57-37) chunks which only contain the fix ingredients in the
parameterized forms, we manually determined whether they
can be reasonably reused. We identified only 4 of such chunks.
We analyzed the failures of ssFix in reusing the 18 (37+4-
23) reasonable chunks for producing the correct patches. We
found that 7 candidate chunks are not ideal for repair. ssFix
yielded bad candidate translations for 3 cases, it created bad
code matching results for 2 cases, and its modifications are

TABLE I
REPAIRING THE DEFECTS4J BUGS

Project
(#Bugs)

sharpFix ssFix
Time (min.) #P #C Time (min.) #P #CMin Max Med Avg Min Max Med Avg

C (26) 0.8 115.7 7.2 19.2 9 4 1 80.7 12.4 20.7 7 2
Cl (133) 1.8 96.1 21.3 26 17 4 2.5 54.9 10.1 16.3 14 2
M (106) 0.7 118.5 11.3 33.2 33 13 1 119.3 14.7 30.2 26 8
T (27) 1.6 30 12.2 15.1 5 0 1.4 37.3 7.5 13.5 4 0
L (65) 0.8 116.1 4.8 18 25 15 0.8 117.8 4.3 13.1 18 10

Sum (357) 0.7 118.5 11.3 25.1 89 36 0.8 119.3 10.1 21 69 22

We show the projects in their abbreviations: C is JFreeChart; Cl is Closure Compiler; M is Commons Math; T is Joda-Time; and L is
Commons Lang. #P and #C are the respective numbers of the plausible and correct patches generated.

TABLE II
REPAIRING BUGS.JAR-ELIXIR BUGS (SHARPFIX & SSFIX)

Project
(#Bugs)

sharpFix ssFix
Time (min.) #P #C Time (min.) #P #CMin Max Med Avg Min Max Med Avg

ACC (10) 1.2 1.2 1.2 1.2 1 1 1.3 4.1 2.7 2.7 2 1
CML (16) 39.2 46.5 42.9 42.9 2 1 35.6 118.1 69.6 73.3 4 2
FLK (7) 0.8 0.8 0.8 0.8 1 1 6.9 6.9 6.9 6.9 1 1

OAK (31) 2.6 98.5 11.2 28.3 10 0 0.6 111.2 5.4 21.4 14 1
MAT (21) 0.8 103.4 26.2 32.2 10 6 0.8 64.9 11.5 17.2 9 5
MNG (5) 32.4 32.4 32.4 32.4 1 0 0.6 0.6 0.6 0.6 1 0
WCT (37) 0.9 91.4 8.4 21.6 14 6 3 82.8 8.7 22.1 12 1

Sum (127) 0.8 103.4 12.8 26.3 39 15 0.6 118.1 8.5 23.9 43 11

We show the projects in their abbreviations: ACC is Accumulo; CML is Camel; FLK is Flink; OAK is Jackrabbit Oak; MAT is Commons
Math; MNG is Maven; and WCT is Wicket. #P and #C are the respective numbers of the plausible and correct patches generated.

not sophisticated enough for producing the correct patches for
6 cases.

Our results show sharpFix’s code reuse is better
than ssFix’s: sharpFix reused 50.8% of the candidate
chunks it retrieved for successful repair while ssFix
only reused 40.4% candidate chunks.

D. Repair

We ran sharpFix and ssFix to repair all the 357 Defects4J
bugs automatically. We also ran sharpFix, ssFix, and four other
repair techniques jGenProg [12], jKali [12], Nopol (version
2015) [13], and HDRepair [14] automatically to repair bugs
in another dataset Bugs.jar-ELIXIR created by Saha et al. [21]
that contains 127 real bugs. We set the time and memory
budgets for repairing each bug as two hours and 8 GB for all
experiments. We ran all the experiments on a machine with
32 Intel-Xeon-2.6GHz CPUs and 128 GB memory. Given that
jGenProg and HDRepair use randomness for patch generation,
we ran each technique in three trials to repair a bug. Despite
the number of trials, we believe our results are sufficient to
show that sharpFix outperforms the two tools: it generated
more than 10 correct patches in one trial than the tools did in
three trials. We did not compare sharpFix to many other repair
techniques that are written for C (e.g., SearchRepair [8], Code
Phage [9], Prophet [23], and Angelix [24]) or are not publicly
available (e.g., PAR [3]) including ELIXIR [21].

The results for the Defects4J bugs are shown in Table I.
sharpFix produced in total 89 plausible patches with me-

Fig. 5. The Overlap of Correctly Patched Bugs (Left: Defects4J; Right:
Bugs.jar-ELIXIR)

TABLE III
REPAIRING BUGS.JAR-ELIXIR BUGS (ALL TECHNIQUES)

Tool Time (min.) #Plausible #CorrectMin Max Med Avg
sharpFix 0.8 103.4 12.8 26.3 39 15

ssFix 0.6 118.1 8.5 23.9 43 11
jGenProg 1.8 61.9 14.6 20.7 5 1

jKali 1.2 32.7 21.6 18.8 6 1
Nopol 4.3 29 9.5 12.6 8 0

HDRepair 93.8 108.1 101 101 2 1

dian and average times of producing a patch being about
11 and 25 minutes respectively. Among the 89 patches, 36
are correct. We manually determined the correctness of a
plausible patch by comparing it to the developer patch and
checking whether the two patches are semantics-equivalent.
Compared to sharpFix, ssFix produced 69 plausible patches
among which 22 are correct. The running times of the two
techniques are comparable. With better code search and code
reuse abilities, sharpFix works significantly better than ssFix
in repairing 14 more bugs with correct patches generated.
As shown in Figure 5 (the left one), it produced 18 correct
patches that ssFix failed to produce. Since the experiment of
repairing all 357 Defects4J bugs is expensive, we did not run
jGenProg, jKali, and HDRepair for comparison. Given that
ssFix outperformed these techniques on this dataset [10], we
believe sharpFix would also outperform them.

Table II shows the repairing results of sharpFix and ssFix
for each of the 7 projects contained in the Bugs.jar-ELIXIR
dataset and for all of them. According to the result table,
sharpFix and ssFix have comparable results for six of the
projects. For WCT, however, sharpFix does significantly better
with five more correct patches generated. For those WCT bugs
for which sharpFix successfully repaired while ssFix did not,
we found sharpFix effectively retrieved the key candidates: For
five of the bugs that ssFix failed to repair, sharpFix looked at
no more than 8 candidates to yield the correct patches (for the
other bug WCT-5686, it found a candidate ranked 31th).
1 //WCT-5891 bug: substring(0,5) should be changed to substring(0,6)
2 int firstDigits=Integer.parseInt(creditCardNumber.substring(0,5));
3 if (firstDigits>=622126 && firstDigits<=622925) {
4 return CreditCard.CHINA_UNIONPAY; }
5
6 //sharpFix’s candidate
7 int firstSixDigits=Integer.parseInt(creditCardNumber.substring(0,6));
8
9 //ssFix’s candidate

10 int firstDigits=Integer.parseInt(creditCardNumber.substring(0,3));
11 if (firstDigits>=300 && firstDigits<=305) {
12 return CreditCard.DINERS_CLUB_CARTE_BLANCHE; }

As an example, for WCT-5891, using the faulty statement at
line #2, sharpFix retrieved the fix statement at line #7 from the
local program that contains the correct argument (integer 6)
for the method call substring. Using the local context of
the faulty statement, ssFix found a candidate that is similar to
the context but does not contain the correct integer argument.
Using such a candidate, ssFix produced an overfitting patch
by modifying not the faulty statement but the neighbouring
if-statement: the condition at line #3.
1 //M33 bug: maxUlps should be changed to epsilon
2 if (Precision.compareTo(entry, 0d, maxUlps)>0) {
3 + if (Precision.compareTo(entry, 0d, epsilon)>0) { //sharpFix’s patch
4 columnsToDrop.add(i); }}

Although sharpFix’s approaches are more effective overall,
there are cases where sharpFix failed to produce correct
patches that ssFix produced. As an example, for the bug M33,

ssFix and sharpFix both targeted the statement at line #4 for
repair. ssFix produced a target chunk including the if-statement
at line #2, and successfully found another if-statement that
contains the correct usage of comparedTo and produced the
correct patch. Since sharpFix failed to include the if-condition
in the target chunk, it missed the opportunity of repairing the
condition. It finally produced an overfitting patch by using an
if-condition to guard the statement.

Table III shows the repairing results of all the six techniques.
We found that compared to sharpFix and ssFix, the other four
techniques have limited repair abilities. They each produced
correct patches for no more than one bug. jGenProg only
looks at finding the fix ingredients as statements from the
local faulty program. This type of repair constrains itself from
finding useful fix ingredients that are expressions and are
from non-local programs. jKali can only do deletions and is
unable to produce many types of non-deletion patches. Nopol
looks at producing if-condition-related patches and is prone
to synthesizing if-conditions that are either too constrained or
too loose. HDRepair leverages mined bug-fixing changes to
guide the search of a correct patch. However, according to
our results, this type of guidance is not effective.

Our results show sharpFix is better than ssFix in
successfully repairing 14 more Defects4J bugs and 5
more Bugs.jar-ELIXIR bugs, and it outperforms the
other four techniques in repairing many more bugs.

All the experimental results can be found at https://github.
com/sharpFix18/sharpFix/tree/master/expt0.

V. THREATS TO VALIDITY

To determine patch correctness, one of the authors manually
analyzed each generated plausible patch and determined it to
be correct if (1) the patch made changes at the right locations
where changes in the developer patch were made and (2) there
was a relatively obvious semantics-preserving transformation
between the patch and the developer patch. We released all the
generated plausible patches and explained each patch identified
as correct as to why. Identifying patches that are semantically
equivalent is in general challenging, and it is possible that
there are patches that are indeed semantics-equivalent to the
developer patches but made changes at locations not targeted
by the developer patches and thus were not identified as
correct. Understanding the failure cases of sharpFix’s and
ssFix’s reuse is also based on manual analysis and could also
be biased. For example, it might not be clear whether a failure
was due to a weak code matching or a weak modification. We
also released the reuse results. We compared sharpFix and
ssFix on two bug datasets and found sharpFix to be better
than ssFix. It is possible to have results different from ours
using other datasets.

VI. RELATED WORK

sharpFix finds and reuses existing code from a code
database for repair. It follows ssFix’s basic idea [10] but uses

different approaches for code search and reuse. sharpFix is
closely related to SearchRepair [8] and Code Phage [9] which
also do code search to find existing code for bug repair.
Different from sharpFix which performs syntactic code search,
SearchRepair’s code search is based on symbolic execution
and constraint-solving, and Code Phage’s code search is based
on program execution. CSAR [25] is similar to SearchRepair
but performs string matching on constraints rather than doing
constraint-solving to identify semantics-related code. sharpFix
is also related to SimFix [26] which leverages similar code
to produce patches. Different from sharpFix, SimFix also
leverages existing patches to build the search space, and it
only looks at the local program for finding similar code.
The syntactic features used by the two techniques for finding
similar code are also different. GenProg [1], [27] is an early
APR technique that is related to sharpFix. It uses a genetic
algorithm to reuse code from the faulty program itself to
produce patches.

sharpFix is related to many repair techniques that use equiv-
alence analysis and cost model [2], human-written templates
[3], bug-fixing instances [28], [29], program comparison [30],
program synthesis [24], [31]–[34], condition synthesis [35],
[36], modifications with patch ranking models [21], [23], [37],
learned transformations [38], [39], reference implementation
[40], and non-test-suite specifications [41].

VII. CONCLUSION AND FUTURE WORK

The success of a search-based APR technique like ssFix
hinges on its abilities in accurately finding the right code for
bug-fixing and effectively reusing it to produce the correct
patch. We identified ssFix’s weakness in doing code search
and code reuse, developed sharpFix which uses improved
code search and reuse approaches, and demonstrated that it
can do better repair. Our future work will look at evaluating
sharpFix on more bug datasets and comparing it with more
APR techniques.

REFERENCES

[1] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” TSE, pp. 54–72, 2012.

[2] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: models and first results,” in ASE, 2013, pp.
356–366.

[3] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE, 2013, pp. 802–811.

[4] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in ICSE, 2014, pp. 254–265.

[5] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” TSE, pp. 707–740, 2016.

[7] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in ICSE, 2016, pp. 702–713.

[8] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search (t),” in ASE, 2015, pp. 295–306.

[9] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” in PLDI, 2015, pp. 43–54.

[10] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in ASE, 2017, pp. 660–670.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,” in
ESEC/FSE, 2014, pp. 437–440.

[12] “SpoonLabs Astor,” https://github.com/SpoonLabs/astor.
[13] “SpoonLabs Nopol,” https://github.com/SpoonLabs/nopol.
[14] HDRepair, “HDRepair repository,” https://github.com/xuanbachle/bugfixes,

2016.
[15] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: an eclipse

plug-in for testing and debugging,” in ASE, 2012, pp. 378–381.
[16] M. F. Porter, “An algorithm for suffix stripping,” Program, pp. 130–137,

1980.
[17] “Revisiting ssFix for better program repair,” 2018. [Online]. Available:

https://bit.ly/2M9ec7E
[18] “Eclipse JDT,” https://www.eclipse.org/jdt.
[19] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, “Is the cure worse

than the disease? overfitting in automated program repair,” in ESEC/FSE,
2015, pp. 532–543.

[20] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in ICSE, 2015, pp. 448–458.

[21] S. P. Reiss, “Semantics-based code search,” in ICSE, 2009, pp. 243–253.
[22] F. Long and M. Rinard, “Automatic patch generation by learning correct

code,” in POPL, 2016, pp. 298–312.
[23] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: effective

object oriented program repair,” in ASE, 2017, pp. 648–659.
[24] DARPA MUSE, “DARPA MUSE repository,”

https://www.darpa.mil/program/mining-and-understanding-software-
enclaves, 2016.

[25] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in ICSE, 2016, pp. 691–
701.

[26] A. Hill, C. S. Păsăreanu, and K. T. Stolee, “Automated program repair
with canonical constraints,” in ICSE-Companion, 2018, pp. 339–341.

[27] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018,
pp. 298–309.

[28] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

[29] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing q&a sites (t),” in ASE, 2015, pp.
307–318.

[30] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in
SANER, 2018, pp. 118–129.

[31] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in ICSE, 2015, pp. 471–482.

[32] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with
quantitative objectives,” in CAV, 2016, pp. 383–401.

[33] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
ESEC/FSE, 2017, pp. 593–604.

[34] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in PLDI, 2013,
pp. 15–26.

[35] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair of Condi-
tional Statement Bugs in Java Programs,” TSE, pp. 34–55, 2016.

[36] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017, pp.
416–426.

[37] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018,
pp. 1–11.

[38] R. Rolim, G. Soares, D. Loris, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transforma-
tions from examples,” in ICSE, 2017, pp. 404–415.

[39] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in ESEC/FSE, 2017, pp. 727–739.

[40] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoud-
hury, “Semantic program repair using a reference implementation,” in
ICSE, 2018, pp. 129–139.

[41] R. van Tonder and C. Le Goues, “Static automated program repair for
heap properties,” in ICSE, 2018, pp. 151–162.

