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Abstract—In this paper we argue for using many
partial test suites instead of one full test suite during
program repair. This may provide a pool of simpler,
yet correct patches, addressing both the overfitting and
poor repair quality problem. To support this idea, we
present some insight obtained running APR partial test
suites on the well studied triangle program.

Index Terms—program repair, overfitting, test suites

I. INTRODUCTION

Automated program repair (APR) has become a com-
mon approach to assist developers by finding potential
program patches [1]. No longer an academic exercise,
APR first localizes, and via a series of automated edits,
transforms a failing program to one that passes a given
test suite, or is, in essence, deemed correct. While many
advances have been made in APR, key challenges remain
including (1) having a sufficient set of specifications [2]
and (2) ensuring a quality test suite based on those
specifications [3], [4]. Incomplete or poorly designed test
suites may cause low quality patches. For instance, code
which is not covered by test suites may be erroneously
deleted or changed, leading to overfitting [5]. Others have
also noted some test suites lead to overly complex patches.
To date there has been a lot of research trying to build
better test suites, and as such, some have argued manual
tests are better than automated tests [3], [5].

In this paper we argue for a new paradigm. Rather
than focusing on individual test suite quality or specialized
selection techniques (such as lexicase selection), we pro-
pose using a lightweight, weaker, but distributed approach:
run many parallel APR runs, each with different partial
test suites, informed by input specifications. This will
lead to many overfit patches, but it also has potential to
provide a pool of correct patches that still satisfy the full
specifications and are simpler in nature. We believe this
approach will work well on programs with test suites which
have been designed using functional decomposition.

Many existing APR tools use some form of partial test
suites, e.g. randomly selected subsets for different program
generations, or on different chromosomes for selection.
Some also post-process tests to reduce complexity of
patches at the end [6]. We instead partition tests based
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on program specification and use a single set of test cases
for all generations during an individual repair.

Figure 1 shows an example fault in a triangle program
(left). This is a well studied program for APR. Recent
work by Langdon et al. [7] explored the search space of this
program and demonstrated it has an uneven distribution
of faults. This suggests tests may fall into partitions that
can be leveraged for our distributed approach.

The fault shown is a single mutation of the program;
however, when we examine automated repairs, we see a
range of fixes from simple to complex. For our purposes,
simple means the lines of the program remain as small
as (or smaller than) the original program. We also assert
these must be correct repairs: ones that would pass a high
quality test suite. If we look at the repair in the middle,
it simply reverts the mutation. This correct version of
triangle has the same size as the original program, i.e. it is
simple. This repair was found repeatedly, but only using
partial test suites. If we look at the program on the right,
the original if statement was modified and an additional
if statement was added. This repair is correct, but it is
complex; we found only complex repairs when using the
full test suite. Our observation is fewer test cases lead
to simpler repairs. These repairs may also be incorrect;
however, if we run different partial test suites in parallel
we may also obtain correct repairs.

II. DEMONSTRATION

We performed a small study to explore the impact of
partial test suites on the success and complexity of repairs.
We use the example triangle program and test cases
provided with the PyGGI 2.0 repair framework [8]. This
program has a single mutation in the same if statement
(if (a > c)) as the mutant in Figure 1, changing tmp=a
to tmp=b. The test suite has 28 test cases, grouped by
program specifications. There are 13 invalid, 3 equilateral,
6 isosceles and 6 scalene triangle tests.

We first ran PyGGI using tabu search with an unlimited
number of iterations and repeated this 15 times. We then
systematically removed test cases for each requirement.
For instance, we removed the equilateral test checks. Then
we removed the isosceles and then removed both of these.
We re-ran the repair with the same settings, 15 times
for each experiment. All experiments are run on a laptop
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Fig. 1. Example fault in a triangle program (left). We show a simple correct repair in the middle and a more complex repair on the right.

TABLE I
COUNT OF SUCCESSFUL AND SIMPLE REPAIRS BY TEST SUITE. ALL INDICATES ALL TESTS ARE USED. THE OTHER COLUMNS INDICATE WHICH
TESTS ARE REMOVED. IS=ISOSCELES, IN=INVALID E=EQUILATERAL, S=SCALENE.

All IS | 1S,S [ IS,S,E | IS,E | IS,E,IN | IS,IN S IN |[IN;E | S,E E
Success 15 1 1 3 0 1 1 15 15 9 15 15
Simple 3 1 0 2 0 1 1 8 10 6 7 3
Avg. Tter 765.5 132.3 | 175.7 83.9 117.1 202.5 209.7 | 1214.8 | 1351.4 | 902.1 | 1845.7 | 810.2
Median Iter | 746.0 72.0 137.0 37.0 86.0 134.0 80.0 1042.0 | 1521.0 | 992.0 | 1589.0 | 570.0

running Windows 10 inside of an Ubuntu 18.04 virtual
machine with 2GB of memory.

We recorded the iteration where the repair is found
and performed two checks. First, we tested all repairs
against the full test suite. If they passed, we manually
examined them for correctness. We then classified them
into two categories. Those which contained the same (or
fewer) lines of code as the smallest patch we found were
marked simple. All others were considered complex. We
saw common patterns repeat which simplified this process.

Table I shows the results of this study. The columns
represent the test suites with All using all 28 test cases.
The other columns show which tests are removed. For
instance, in the second column (IS) isosceles tests are
removed, and in the third column (IS,S) both isosceles
and scalene tests are removed.

The first row shows the number (out of 15) trials with
a correct repair. For example, the All column finds 15
and IS only 1. The next row lists the number of simple
repairs. The All column finds 3 and the IS, 1. The next two
rows show the average and median number of iterations
which were required to find a repair (irrespective of its
correctness). Most of the partial test suites find at least one
repair (all except IS,E). The smaller test suites such as S,
IN, and E find a large number of correct patches, and more
of these are simple. This suggests an interplay between
relaxed requirements during repair and the algorithm’s
ability to find simple patches.

III. CONCLUSIONS

In this paper we argue for a new perspective on APR
test suite quality based on partial specifications. We see
an opportunity to repair in a distributed fashion and use a
pool of (potentially overfit) repairs to choose those which
satisfy the full test suite. A full evaluation is future work.
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