
Optimising SQL Queries
Using Genetic Improvement
James Callan

University College London, UK
james.callan.19@ucl.ac.uk

Justyna Petke
University College London, UK

j.petke@ucl.ac.uk

Abstract—Structured Query Language (SQL) queries are ubiq-
uitous in modern software engineering. These queries can be
costly when run on large databases with many entries and tables
to consider. We propose using Genetic Improvement (GI) to
explore patches for these queries, with the aim of optimising
their execution time, whilst maintaining the functionality of the
program in which they are utilised. Specifically, we propose
three ways in which SQL JOIN statements can be mutated in
order to improve performance. We also discuss the requirements
of software being improved in this manner and the potential
challenges of our approach.

Index Terms—genetic improvement, SQL query optimisation

I. INTRODUCTION

Inefficient SQL queries can be very costly, whether that cost
comes from the parsing or execution of the query. However
small changes to queries can offer performance benefits. For
example, in the commit found at [1], we see a developer
has removed a single redundant JOIN statement in order to
improve the execution time of this SQL query. This removal
may lead to a slightly different result from the query, however,
no other code in the project was modified, suggesting that the
wider program was ambivalent to the change.

Genetic improvement (GI) has been used to improve the
execution time of many different forms of software [2]. Due
to the diversity of applications improved by GI in the past,
we believe that it can similarly be utilised in order to improve
the execution time of SQL queries whilst maintaining their
functionality. SQL optimisations would be particularly useful
due to the wide array of software which utilise them. Software
written in many different languages and used in many different
settings could benefit from SQL optimisation.

Previous work optimising SQL queries has mostly con-
cerned optimisations on the SQL server side, including opti-
mising the execution schedule [3], row matching algorithm [4],
compilation changes [5], and changes to server implementa-
tion [6]. These optimisations aim to be generic to many queries
rather than finding optimisations for specific queries.

II. PROPOSED APPROACH

Our proposed approach is tailored towards improving
queries which read from databases rather than those which
write to them. This allows us to avoid changing the structure
or contents of the database which could have wide-reaching
effects to both other areas of code and even other instances of

software, if the database is not local. Therefore, we suggest
to only focus on SELECT queries.

Different search algorithms, such as genetic programming
or local search, may be used to explore the query patch search
space. The population should consist of patches containing a
list of mutations to apply to the query being optimised [2].

In this work, we propose new mutation operators for modi-
fying JOIN statements within SELECT queries, in particular.

A. Mutations

We believe that JOIN statements are the best targets for
mutation as they can result in large operations, comparing the
value of many database entries. JOIN statements are used to
combine tables within the database, the rows of each table are
combined based on matching values of particular fields. For
example, an INNER JOIN presents the combined rows where
a match is found, discarding those where no match is found.
OUTER JOIN functions similarly but also returns rows where
no match is found1.

In order to target these statements, we propose three muta-
tion operators for JOIN statements:

JOIN removal Delete a JOIN statement.
JOIN reorder Change the order of JOIN statements in a
sequence.
JOIN type Change the type of JOIN operation
performed, the list of possible types are:
[INNER,OUTER,LEFT,RIGHT].

Sometimes, as seen in [1], unnecessary JOIN statements
are present which add new fields to results that are not needed
by the software, the JOIN removal mutation aims to remove
these statements.

The JOIN reorder mutation aims to find the optimal order
of JOIN statements in a sequence. Changing the order of
sequential INNER JOIN operations will not alter the output,
however depending on the data being compared in each
operation it may offer performance benefits. OUTER JOIN
order changes may alter the output of a query, however this
may not affect the program making the query. In a series of
JOIN operations, if the last join discards a significant number
of records compared to others it is likely that performing it first
will reduce the number of evaluations needed by subsequent

1Examples and explanations of each type of JOIN statement can be found
at http://www.sql-join.com/sql-join-types

http://www.sql-join.com/sql-join-types


joins. Unoptimally ordered JOIN sequences can be orders
of magnitude more expensive than optimal ones [3]. This
mutation operator mimics optimisations used on SQL servers.
Servers attempt to find optimal join order when they receive a
query [3]. However, this optimisation lengthens the execution
time of the query. Cost estimates are used to save time which
may introduce errors. Using GI to find these optimisations
will allow decisions based on real measurements and remove
the cost of optimisation at runtime. The FORCE ORDER flag
should also be modified to ensure that the server does not
override the newly selected order.

The JOIN type mutation allows changes to the number
of rows returned by JOIN operations. Improvements would
most likely come from reducing the amount of data being
transferred. Changing from OUTER JOINs to INNER JOINs
or FULL JOINs to LEFT/RIGHT JOINs could reduce the
number of rows returned by the operation.

Genetic operators which have been used in previous
work [2] (e.g. delete, copy, and replace) may also
prove useful when applied to the SQL code of a project. The
operators could be applied at, e.g, line or statement level.

B. Testing

We believe that variants should be tested in the context in
which they are utilised by software, rather than attempting to
reproduce the exact values returned by the original query. A
mutant query may not return the same fields and format as
the original query, yet the program utilising this query may
be ambivalent to the differences. It, therefore, may be more
useful to run the unit or integration tests of code which call
and use the results of queries, rather than directly testing the
query. This will allow flexibility but still ensure preservation
of functionality.

C. Measurement

The measurement of the execution time of mutant queries
will vary depending on the particular database in use.
Databases such as SQL-Server2 automatically measure and
report the CPU time on the server, this however may neglect
the cost associated with I/O of the program making the request.

Another option would be to simply time the execution of
the test suite. This would capture all associated costs of the
query, however would be subject to more noise than CPU time
due to other processes running on the device.

III. CHALLENGES

One of the main challenges in validating this approach
would be finding software with well-tested queries and extract-
ing the areas of the test suite which test these queries. Manual
evaluation of existing test suites may be necessary to determine
whether a piece of software can be safely improved. Test suites
may also need to be expanded to better exercise query results.
Automated test suite generation tools, e.g. EvoSuite [7], could
be useful for enhancing test suites.

2https://www.microsoft.com/en-gb/sql-server/sql-server-downloads

Another concern is that the optimised queries would be
biased towards the contents of the database on which they are
tested. Factors like the number of records in each table should
be representative of the real database in use by the software.
If it is not representative, the improvements found may not
translate into real-world improvements. A copy of it could be
tested against to ensure that the optimisations are effective.

Databases are not static, entries and tables are regularly
added, removed, and modified. Therefore, optimisations which
are effective at one time may not necessarily generalise
throughout the lifespan of the database. Multiple copies of
databases from different time periods could be used and
average measurements taken to ensure that optimisations gen-
eralise and are not biased to the database at a particular time.

This approach is limited to SELECT queries and focuses
on improving the speed of their JOIN operations. However in
the future, it could be expanded to improve database writing
queries. This would require testing to verify that the structure
and contents of the database have been preserved between the
original query and improved variants.

Optimisation with respect to execution time may have
unintended consequences on other properties of the software
being improved. Larger query results may lead to higher
memory and bandwidth usage. Multi-objective optimisation,
such as the NSGA-II algorithm [8], could be used to find the
best trade-offs between these properties.

IV. CONCLUSIONS

SQL queries offer a good target for optimisation, a tech-
nique to improve their execution time could have far-reaching
consequences on many types of software in many environ-
ments. We have presented a technique which could find
optimisations by targeting often inefficient JOIN statements.
We intend to verify this approach with empirical analysis.

ACKNOWLEDGMENT

Funded by the EPSRC fellowship EP/P023991/1.

REFERENCES

[1] “SQL JOIN removing commit.” [Online]. Avail-
able: https://github.com/erikusaj/fdroidTvClient/commit/
620affa239941c764cd5a132bb687857315c744d

[2] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 415–432, 2018.

[3] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neu-
mann, “How good are query optimizers, really?” Proc. VLDB Endow.,
vol. 9, no. 3, pp. 204–215, 2015.

[4] K. Nakabasami, H. Kitagawa, and Y. Nasu, Optimization of Row Pattern
Matching over Sequence Data in Spark SQL, ser. Lecture Notes in
Computer Science. Springer, 2019, vol. 11706, pp. 3–17.

[5] F. Schiavio, D. Bonetta, and W. Binder, “Dynamic speculative optimiza-
tions for SQL compilation in apache spark,” Proc. VLDB Endow., vol. 13,
no. 5, pp. 754–767, 2020.

[6] M. Zhai, A. Song, J. Qiu, X. Ji, and Q. Wu, “Query optimization approach
with shuffle intermediate cache layer for spark SQL,” in IPCCC. IEEE,
2019, pp. 1–6.

[7] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in SIGSOFT FSE. ACM, 2011, pp. 416–419.

[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

https://www.microsoft.com/en-gb/sql-server/sql-server-downloads
https://github.com/erikusaj/fdroidTvClient/commit/620affa23994 1c764cd5a132bb687857315c744d
https://github.com/erikusaj/fdroidTvClient/commit/620affa23994 1c764cd5a132bb687857315c744d

	Introduction
	Proposed Approach
	Mutations
	Testing
	Measurement

	Challenges
	Conclusions
	References

