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Abstract—Machine learning accounts for considerable global
electricity demand and resulting environmental impact, as train-
ing a large deep-learning model produces 284 000kgs of the
greenhouse gas carbon dioxide. In recent years, search-based
approaches have begun to explore improving software to consume
less energy. Machine learning is a particularly strong candidate
for this because it is possible to trade off functionality (accu-
racy) against energy consumption, whereas with many programs
functionality is simply a pass-or-fail constraint. We use a grid
search to explore hyperparameter configurations for a multilayer
perceptron on five classification data sets, considering trade-offs
of classification accuracy against training or inference energy.
On one data set, we show that 77% of energy consumption
for inference can be saved by reducing accuracy from 94.3%
to 93.2%. Energy for training can also be reduced by 30-50%
with minimal loss of accuracy. We also find that structural
parameters like hidden layer size is a major driver of the energy-
accuracy trade-off, but there is some evidence that non-structural
hyperparameters influence the trade-off too. We also show that a
search-based approach has the potential to identify these trade-
offs more efficiently than the grid search.

I. INTRODUCTION

A crucial part of developing a machine learning platform for
a given task is configuring and tuning the model to maximise
performance. Typically this targets one objective: maximising
the accuracy of the final model on unseen data. However, little
thought is usually given to the energy consumed by the model,
either in training or inference. This matters at both extremes
of scale. As datacentres are predicted to consume 8-21% of
global electricity by 2025, it is estimated that training a large
deep-learning model produces 284 000kgs of the greenhouse
gas carbon dioxide, equivalent to the lifetime emissions of
five cars [1]. On modern smartphones, battery life is a critical
aspect of user experience and while display, wifi and GPS also
have a large impact on power consumption, CPU usage is a
major factor, consuming 27-35% of the device’s power [2].

The machine learning community is becoming aware of
this as an issue, with a few groups exploring measurement of
energy for deep learning [3]-[6], techniques to reduce model
complexity [7]-[9], and the Low Power Image Recognition
Challenge (LPIRC) [10]. It would seem that extending the con-
ventional approaches to parameter tuning of machine learning
models to include energy efficiency would be a potential easy
win towards improvements in this area.

Search-based approaches have proven successful for target-
ing non-functional properties of software (including energy)

in other areas, e.g., [11]-[16]. Machine learning is an ideal
target for this approach, because functionality (i.e. model
accuracy) is measured on a continuum rather than a fixed
specification. So the opportunity exists to trade-off a small
part of functionality to gain in another area such as CPU
resources consumed. The authors are aware of only three
studies [17]-[19] applying search-based techniques to tuning
of machine learning for energy using model-based approaches
to estimating energy consumption; in Java for multilayer-
perceptrons [17], and in Python for deep neural networks [18],
[19]. The latter two only focused on structural parameters on
the assumption that these directly impact energy; yet these do
affect accuracy and here, as we are considering the trade-off
between accuracy and energy, we consider both.

The interesting result in [17] was that, while occasion-
ally a trade-off existed between model accuracy and energy
consumption, for several datasets it was possible to optimise
both. That is, there was no trade-off between the two. In the
present paper, as well as using a different environment (Python
scikit-learn rather than Java WEKA), we also consider more
hyperparameters and it will be interesting to see if the same
conclusion can be made.

Motivated by the above, the present study further explores
the possibility of hyperparameter tuning for energy-efficient
machine learning. We focus on the popular scikit-learn library
in Python, using the RAPL tool provided by Intel CPUs
to measure energy consumption. We wish to investigate the
following questions:

RQ1 TIs there a trade-off between energy efficiency and
model accuracy?

RQ2 What are the crucial factors driving energy use?

RQ3 Is there a difference in these factors between energy
use for training (building the model) and for infer-
ence (using the model)?

RQ4 Are there some models where we can spend more
energy training to get a more efficient inference
stage?

RQ5 What is the potential for search-based optimisation

in this context?

This preliminary study answers RQ1 in the affirmative: there
is a trade-off apparent for the models and data sets explored.
On one data set, we show that it is possible to reduce the
energy consumption for inference by 77%, with accuracy only



dropping from 94.3% to 93.2%. Energy savings of 30-50%
are also possible for training, again with minimal reductions
in classification accuracy of the resulting model.

We also make some preliminary investigations towards
answering RQ2-5. As one might expect, structural parameters
like the number of hidden layer neurons are important, but
there is also some evidence that non-structural hyperparame-
ters have some influence on the trade-off as well. There are
clear differences in the trade-offs when considering training or
inference energy. We also show that a search-based approach
is able to approximate the trade-off reasonably well with fewer
function evaluations than a grid search.

II. TARGET OF INVESTIGATION

We focus on one of the most popular paradigms in machine
learning: multilayer perceptrons (MLP). Our experiments used
the MLPClassifier implementation within scikit-learn 0.23.1,
provided by Anaconda 4.9.2 running Python 3.8.3. MLPs were
also studied in [17] using the WEKA framework.

The hyperparameters chosen for variation in the study
are listed in Table I. This is a comprehensive list of all
hyperparameters that are open to tuning in the scikit-learn
MLPClassifier API, except those that are specific to only a
subset of solver algorithms. Please note that the range of
hyperparameters used to tune the MLP on the ’mortgage’
dataset was restricted due to the prohibitive computational
cost. The possible values are arbitrary but based on typical
values used in real applications and always include the default
chosen by scikit-learn’s developers. A brief note is given of
the impact of each hyperparameter: further detail can be found
in the scikit-learn documentation'.

We are interested in the energy consumption attributable to
both the training and inference stages of the model’s life cycle.
Some of the aforementioned hyperparameters clearly have an
impact on the final structure of the model and the processing
involved in inference (e.g., hidden layer sizes), and so are
likely to have a direct impact on energy during inference.
While some (e.g., max iterations for the training algorithm)
only directly impact the training process, they will typically
interact with other hyperparameters that are relevant to the
inference process [20]: for example, it might be that reducing
the hidden layer size reduces energy, but then requires a
different activation function to improve the accuracy. As such,
we include all hyperparameters in the explorations for both
stages.

III. METHODOLOGY

We now describe the tools used within this study. Our
experiments make use of PyRAPL 2, which provides a Python
interface to the Intel "Running Average Power Limit” (RAPL)
technology. RAPL estimates power consumption of a CPU and
is available on Intel CPUs since the Sandy Bridge generation,
albeit with different levels of energy information available. On

Uhttps://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html
2Version 0.2.3.1 https://pypi.org/project/pyRAPL/

the Xeon CPUs used in this study, RAPL provides measure-
ments for the energy consumption of the whole CPU socket
package. Although RAPL is actually a model-based estimator
built in to the CPU, its estimates have been shown to be highly
correlated with measured power consumption [21].

The experiments were performed using a workstation run-
ning Debian OS, with two 16-core Intel Xeon E5-2620 v4
processors, each running at 2.1 GHz (boosting to 3GHz), with
32GB DDR4 memory running at 2.4GHz. The experiments
were run sequentially, and no other computationally intensive
processes were run in parallel with the experiments.

Our experiments apply the models to five data sets, listed in
Table II. As with [17], we used four of the well-known UCI
classification benchmarks (diabetes, glass, ionosphere, iris). As
these data sets are rather small compared to many practical
applications, we also included a mortgage lending data set
from Kaggle®. This contains records and application status
of 500000 mortgage loan applications from 6111 different
lending institutions in the USA. In common with most real-
world data sets, the mortgage data needed some pre-processing
before modelling. Specifically, five variables with flat and
wide distributions (essentially just random noise from the
modelling perspective) were dropped. These were row_id,
lender, msa_md, state_code, and county_code. Instances with
outlier values were removed where loan_amount< 3750,
applicant_income <= 2000, and population <= 35000. Cat-
egorical variables were treated with one-hot encoding, and
numerical variables were scaled to the range [0,1].

For all the data sets, the original data was split into training
and test sets with a ratio of 75:25.

IV. EXPERIMENT 1: GRID SEARCH

Our first experiment applied a grid search (exhaustive ex-
ploration) over the possible hyperparameters values for each
model type on each data set. Grid search is commonly used
for exploring hyperparameter configurations, and although it
is limited to a relatively low-resolution search of the space
through having a finite set of values for each hyperparameter,
it has the advantage of being immune to any randomness in
the search process. The results from this search were post-
processed to find the Pareto-optimal (trade-off) configurations
in terms of different metrics. As the search is exhaustive these
configurations are genuinely Pareto-optimal for the range of
hyperparameter values tried. This experiment is designed to
answer the first research question, at least in the context of
MLPs applied to these specific data sets: Is there a trade-off
between energy efficiency and model accuracy?

In the grid search experiment, we measured the following
for each configuration:

o Test Accuracy: the accuracy of the model on the unseen
test data set

e CV Accuracy: the mean accuracy over 5 folds of cross-
fold validation on the training data

3https://www.kaggle.com/dinu1763/mortgage-loan-approval



TABLE I
THE MLP HYPERPARAMETERS AND RANGE OF VALUES USED IN OUR EXPERIMENTS

Hyperparameter Range /  values | Range /  values | Description
(UCI data) (Mortgage data)

Hidden layer size | 2, 5, 10, 20, 50, 100, | 50, 100, 200 Number of neurons in hidden layer
200, 500

Activation fn logistic, tanh, relu logistic, tanh, relu

Solver sgd, adam, 1bfgs sgd, adam
Alpha 0.002, 0.001, 0.0005, | 0.0005, 0.0001
0.0002, 0.0001
Max iterations 100, 200, 400, 800 200, 400
Dataset Instances  Attributes
Pima Indians Diabetes 768 8
Glass Identification 214 10
Ionosphere 351 34
Iris 150 4
Mortgage 500000 17
TABLE II

DATASETS USED

e Training CPU Energy: the energy use in microjoules for
the CPU reported by PyRAPL for model fitting

e Training CPU Duration: the time taken to fit the model
to the training data, measured in seconds with nanosec-
ond resolution using python’s time.process_time ()
method

o Training Runtime: the wall-clock time taken to fit the
model to the training data, measured using python’s t ime
.time () method

o Inference CPU Energy: the energy use for the CPU
reported by PyRAPL for 1000 applications of the model
to the test data

o Inference CPU Duration: the time taken to apply the
model to the test data 1000 times, measured using
python’s time.process_time () method

o Inference Runtime: the wall-clock time taken to apply
the model to the test data 1000 times, measured using
python’s time.time () method

The measurements for inference (application of the models
to the test data) were repeated 1000 times, as inference is much
less CPU intensive than training, resulting in much smaller
values to measure for each metric.

In reporting our experiments, for brevity here we focus our
reporting on energy measurements and the model accuracy
for the unseen test data set. The full set of results and
plots, including CPU times and cross-fold validation accuracy
(which used the training data) can be found at the URL given
at the end of the paper.

To briefly summarise the results not detailed in the paper:
similar trade-offs do appear for CPU time and run time
vs the accuracy measures. Similarly, changing to cross-fold
validation accuracy rather than test accuracy shows similar
trade-offs, although the shapes of each Pareto front are subtly
different.

Activation function for the hidden layer neurons
Solver algorithm used to fit network weights
L2 penalty (regularization term) parameter

The solver iterates until convergence or this number of
iterations
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Fig. 1. Histogram of CPU energy for model training of one configuration on
Iris, over the 30 repeat runs. Most look like this: clearly not normal, so we
use non-parametric statistics in our reporting.

A. CPU time and energy

Run times, and to an even greater extent, energy mea-
surements [22] are subject to noise from the numerous en-
vironmental factors affecting a running system. This includes
varying CPU speeds, caching, and other processes running.
As such, for all of the experiments, we repeated the training
and test runs 30 times. These repeats were also interleaved so
that, as much as possible, environmental effects would impact
the results for all configurations evenly, as summarised in
Algorithm 1. These measurements across repeat runs do not
usually follow a normal distribution: Figure 1 summarises the
30 energy measurements for training the MLP model on the
Iris data set. As such, where the values are aggregated, we
use non-parametric statistics such as median and interquartile
range. In some rare cases (fewer than 0.05% of runs), PyYRAPL
failed, returning a negative value for energy. These results were
filtered out before our analysis.

Often, CPU time is used as a proxy for energy use [23],
but it has been found that this can be inaccurate, particularly
because this omits CPU idle states [24]. It would appear
that in the present setting, while broadly linear for longer
runs, particularly with shorter runs the relationship is not so
simple. Figures 2 and 3 display the CPU energy and CPU



Data: M sklearn regression model (MLP or RF)
Data: C all hyperparameter configurations of M
Data: T'r training data set
Data: Te test data set
1 for i < 1 to 30 do
2 foreach c € C do
3 m < M .copy(); m < m.setParams(c);
accuracy <— m.crossFoldValidation(7'r);
trainingMetrics <
measureEnergy AndTime(m.fit(T'r));

4 for 7 + 1 to 1000 do
5 testMetrics <
measureEnergy AndTime(m.predict(1e));
6 end
7 end
8 end

Algorithm 1: Interleaving of runs
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Fig. 2. CPU time vs CPU energy (training, Iris dataset).

time measurements from all hyperparameter configurations
for the training and inference stages of the MLP on the Iris
dataset. The shorter running training and inference stages both
show a separate linear relationship with energy to the longer
runs; possibly due to the effects of caching and Intel Turbo
Boost. This motivates taking separate measurements specific
to energy. In this paper we will report energy measurements
only from here on, although the publicly available results do
include the CPU and run times as well.

B. Grid results

We plotted each of the time and energy metrics against the
accuracy on the unseen test data set (ultimately what we are
most interested in from a modelling perspective — as noted
above, we also measured cross-fold validation accuracy and
it would appear that similar trends exist for that). Time and
energy measurements across the 30 repeat runs for each con-
figuration were aggregated, and the points on each plot show
the median value for each metric, with error bars indicating the
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Fig. 3. CPU time vs CPU energy (inference, iris dataset).
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Fig. 4. For all configurations of the MLP on the Diabetes data set, accuracy
on test set vs CPU energy while training.

interquartile range. The ideal configuration would be located
bottom-right, with minimal run-time or energy consumption,
but maximal accuracy. We might expect a trade-off between
these metrics to span bottom-left (low energy / run-time and
low accuracy) to top-right (high energy / run-time and high
accuracy). One of these plots is given in Figure 4.

The full set of results can be seen via the URL provided at
the end of the paper. We will summarise the overall trends seen
here. For the energy measurements on training and inference
phases, on all data sets, there is a broad spread of configura-
tions in both accuracy and energy. Overall, it would seem that,
against the full range of possible accuracy values and energy
measurements, that it is possible to reach relatively high
accuracy with relatively low energy consumption. However, a
trade-off does seem to appear in the high-energy high-accuracy
region, so the next section will investigate this more closely.
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Fig. 5. Pareto Front: MLP on the Mortgage data set. The trade-off of model
accuracy on test data vs CPU energy for training. Note, the errors bars are
still present here, but small enough to be obscured by the points themselves.

C. Results: trade-off

To inspect the utopian region (high accuracy, low energy)
more thoroughly, we filtered the configurations to those in the
Pareto-optimal set. To find these, we took those configurations
explored by the grid search, and removed any for which there
existed a configurations with both lower accuracy and higher
energy. This process was repeated for both CPU energy during
training and CPU energy during inference.

Figure 5 shows the CPU energy consumed for training the
MLP on the Mortgage data set, demonstrating a clear trade-off.
Importantly, at the high-accuracy end, there is jump in energy
consumption with only a small increase in accuracy (known
as a “knee point”). This was observed for the MLP on four
of the five data sets studied (the exception being Iris). On
the Mortgage data set, a slight reduction in accuracy (66.7 to
66.5%) reduces energy consumption by 30.4%. With the Glass
data set, dropping accuracy from 77.8% to 75.9% reduces
energy consumption by 51%.

Figure 6 shows that the same can be observed for the
inference stage with the MLP on the Glass data set. A trade-
off was still observed for each of the data sets, though the
knee point was really only apparent with Glass and Ionosphere
for the inference stage. However, the jump is very large for
Ionosphere: reducing accuracy from 94.3% to 93.2% reduces
energy consumption for inference by 77%.

V. EXPERIMENT 2: PARAMETER RELATIONSHIPS

The second experiment is designed to explore the relation-
ship between the hyperparameters and the energy / accuracy
metrics. This makes a step towards answering Research Ques-
tion 2: What are the crucial factors driving energy use?.

In this experiment, we took the Pareto fronts from the previ-
ous section, and sorted the configurations in ascending order of
energy and accuracy. These were then plotted as illustrated in
Figure 7. Here, the first five columns are the hyperparameter
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Fig. 6. Pareto Front: MLP on the Glass data set. The trade-off of model
accuracy on test data vs CPU energy for inference.
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Fig. 7. Hyperparameter trends along the Pareto front representing the trade-off
of test accuracy vs training energy for the MLP on the Glass data set

values (with either a unique colour for each value with the
categorical hyperparameters such as ”solver”, or a bar showing
the value for the numerical hyperparameters). The final two
columns show the CPU energy and the accuracy, to help
identify where particular hyperparameters values correspond
with knee-points in energy use.

After exploring these plots for accuracy vs energy use in
both training and inference, we can make some general ob-
servations for the data sets and hyperparameters we explored.
For test accuracy vs energy for training:

¢ ‘tanh’ is often at the high energy+accuracy end, otherwise
no clear pattern shows for activation functions or alpha

« Hidden layer size clearly increases with energy+accuracy
for the Glass data, but otherwise there is no strong pattern

o Counter-intuitively, sometimes we get higher accuracy
with a smaller hidden layer size and longer training. This
would partly explain why we sometimes get more energy
on training and less for inference (especially true with
Diabetes and Iris).

e ‘adam’ solver typically appears in high energy high
accuracy configurations; ‘sgd’ typically appears in low
energy low accuracy configurations

For test accuracy vs energy for inference:
o There is no clear pattern for activation function or alpha.
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o Unsurprisingly, here hidden layer size is important. There
is a clear positive correlation with energy and accuracy.

o There is a much less clear pattern for maximum iterations.

o There is also a less clear pattern for solver, though ‘adam’
is often at the low energy+accuracy end.

o The leap in energy consumption on the Pareto front for
ionosphere is going from 2 to 100 hidden neurons.

These results also go some way towards answering RQ3:
Is there a difference in these factors between energy use for
model training and for inference? Clearly, the answer is yes.
It is also particularly interesting to see some evidence that
the choice of solver has an impact on the trade-off, even for
inference, given that it only affects the training process.

We also consider RQ4: Are there some models where we can
spend more energy training to get a more efficient inference
stage? This would be particularly beneficial for deployment
where inference is expected to make up the bulk of com-
putational effort. Figure 8 shows the CPU energy measured
for inference plotted against the CPU energy measured for
training for all configurations of the MLP on the Ionosphere
data set. All the other data sets showed the same general
picture. At least for these results, it would appear that, while
it is possible to have model configurations with high energy
consumption for inference but low energy for training, there
is little evidence that configurations exist where the converse
is true. Configurations that consume little energy for inference
also appear to be cheap to train.

VI. EXPERIMENT 3: APPLICATION OF NSGA-II TO
APPROXIMATE THE TRADE-OFFS

All the above experiments and results used an exhaustive
grid search. It is well-known that stochastic searches offer
scope to efficiently explore a much wider range of hyperpa-
rameter values with a similar cost. This leads us to Research

Question 5: What is the potential for search-based optimisa-
tion in this context? We used the same parameters and ranges
as for the grid search, but allowed the numerical parameters to
take any value between the lower and upper bounds in Table I.
The values of the categorical hyperparameters were encoded
as integers so the same crossover and mutation operators
could be used for all variables. The objectives targeted for
optimisation were accuracy on the test data set, and median
CPU energy for 30 repeats of model training. The search was
performed by NSGA-II as provided by jMetalPy [25]*. NSGA-
IT was configured with a population size of 8, polynomial real
mutation (rate 1/n), simulated binary crossover (rate 1), and
a maximum of 240 function evaluations (arbitrarily chosen as
1/6 the total number of possible configurations, to achieve
a reasonable reduction in run-time over the grid search).
These parameters could be tuned further, but the point of this
experiment is simply to show the potential for a search-based
algorithm on this problem: population size was chosen to allow
a reasonable number of generations within the tight evaluation
budget; the other parameters were simply the defaults as set
within jMetalPy.

Figure 9 shows the minimal, median and maximal attain-
ment curves [26] reached by NSGA-II plotted over the results
from the grid search. The median attainment curve (that is, the
part of objective space reached by at least half of the repeat
runs of the algorithm) is shown as a solid line. Around this
line is a shaded area, bounded by the minimal and maximal
attainment curves (reached by only one repeat run and by
all repeat runs respectively). This is intended to illustrate the
spread of results found by the algorithm. It can be seen that
in the best case, NSGA-II was able to get very close to the
global Pareto front. In the median and worst cases it was not
able to find the best configurations either in terms of energy or
accuracy, but still came close. Further tuning of NSGA-II (or
indeed an alternative MOEA) may be able to improve on this
further, though it may not even be necessary unless the range
of options presented to the grid search grew much further.

VII. RELATED WORK

Research in machine learning has begun to explore the
topic of energy consumption, as well as techniques to improve
efficiency. Several researchers have modelled or approximated
the energy consumption due to deep learning. This typically
involves counting the number of operations (e.g., [8]); and
can include corrections for different data types involved [27].
Predictive models relating energy to model-specific features
like kernel size and number of layers [6], more general
hyperparameters [18], [19], or instructions [17] have also been
used. Usually model-based approaches have been used for
speed, in contrast to the CPU-provided measurements used
in the present paper.

Approaches to reducing the energy consumption in deep
learning have focused on reducing the complexity of the
network in order to reduce the costly calls to retrieve network

4v1.5.5
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Fig. 9. CPU energy (Joules) for training vs test accuracy, on the Diabetes data
set. The points are those found by the grid search. The solid line represents
the median attainment curve (the region of objective space reached by half of
the runs). The shaded area around each line shows the variation in the runs:
the upper extent of shading being the front reached by all runs, and the lower
extent of shading being the front reached by only one of the runs.

weights from memory using pruning [8], compression [7] and
compact models [9]. Hyperparameter tuning using a GA to
identify the energy-accuracy trade-off was briefly explored
in [17], and an energy-latency trade-off (with accuracy as a
constraint) in [18]. Bayesian optimisation for hyperparameter
tuning with energy consumed by a GPU was also considered
in [19]. Most studies that have looked at hyperparameters have
focused on structural parameters on the assumption that these
directly impact energy, with the exception of [17] that did
also look at learning rate and momentum. Furthermore, most
studies have only focused on reducing energy in the inference
stage; only [17]-[19] considered training.

A helpful recent summary of energy in machine learning is
found in [3], which reviews techniques for measuring energy
and some applications in machine learning. The authors noted
that most studies apply post-processing techniques to reduce
the energy consumption of the neural network. In general the
approach has been to keep the number of model parameters
low to reduce the overhead in performance, and very few
studies have explicitly incorporated energy-use during train-
ing. The authors of [3] also provide two case studies. They
looked at four model configurations for data stream mining
algorithms, using the Intel power gadget to measure energy,
finding that 16% higher accuracy could be obtained at a cost
of 1.12x energy. They also looked at the energy consumption
of inference in three convolutional neural networks, using
a regression model to estimate energy given the number of
SIMD instructions and bus accesses called by the model.

More broadly, the energy consumption attributable to soft-
ware is becoming increasingly important to software devel-
opers [28], particularly as software development moves away
from the ‘mid-range’ of the desktop (and the relatively homo-
geneous architectural configuration of PCs) to the extremes

of both large- and small- scale computing [12]. A variety of
energy measurement approaches have been described. Often,
CPU time is used as a proxy for energy use [23], but this
can be inaccurate [24]. Both [29] and [30] use regression
models built on the number of a system calls made by
a running program. Static or dynamic analysis of program
paths with respect to known power consumption of hardware
components can also be used [31]. Direct measurement using
instrumentation hardware can be in terms of the overall system
power [32]-[34]. Power consumption due to the CPU can also
be determined via the Intel Power Gadget API [12], [35].

The present paper looks at hyperparameter tuning. The re-
lated topic of Deep Parameter Optimization [36], [37] exposes
hard-coded constants in source code for tuning; a more general
concept is Programming by Optimization [38], where design
decisions are moved from software development to nearer
deployment, allowing software to be tuned to a particular use-
case. Gains can be made in many areas (e.g. functionality,
run-time, memory footprint, energy consumption etc.) and the
added benefit of improving software is that we might generate
multiple alternatives that can easily be hot-swapped in re-
sponse to changing resource availability or other requirements
- termed the Pareto program surface [39]. These alternatives
trade-off properties against each other; such as fit-to-target-
distribution vs energy use for random number generators
[40]. While hardware clearly has a major impact on energy
efficiency, applications remain a ripe target for improvement,
e.g., 40% energy savings achieved by optimizing workload
and thermal management in data centres [41], in addition to
the examples above.

VIII. CONCLUSIONS

We have explored the trade-off between energy consumption
and accuracy for different hyperparameter configurations of a
popular machine learning framework, multilayer perceptrons.
We have shown that there is a clear trade-off for the models
and data sets explored. In one case it was possible to reduce
the energy consumption for inference by 77%, with accuracy
only dropping from 94.3% to 93.2%. Energy savings of 30-
50% for training were possible with minimal reductions in
classification accuracy.

We have shown that structural parameters like the number
of hidden layer neurons are important drivers of this trade-off
when considering both training and inference energy, but there
is also some evidence that non-structural hyperparameters have
some influence on the trade-off. There are clear differences in
the trade-offs when considering training or inference energy,
allowing for greater choice in deployment: it can be possible
to choose whether to have more energy efficiency in training
or in inference. Of course, spending considerable energy on
the search for a minimal energy configuration only makes
sense if either (a) working on a small but representative
sample set; (b) focusing all our efforts on reducing energy for
inference. A search-based approach was also shown to be able
to approximate the trade-off with fewer function evaluations
than a grid search.



The potential for future work in this area is considerable.
Clearly, to generalise further we must consider additional data
sets and hardware architectures than those explored. There is
also very little work done on energy for other popular ma-
chine learning paradigms: random forests, linear and logistic
regression, k-nearest neighbours etc. Deeper exploration of
the hyperparameters that drive the trade-offs is also crucial
to allowing us to find more accurate models that do not cost
the Earth.
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