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ABSTRACT
We present a vision of genetic improvement �rmly embedded in,
and supported by, programming languages. Genetic improvement
has already been envisioned as the next compiler, which would take
human wri�en programs as input and return versions optimised
with respect to various objectives. As an intermediate stage, or per-
haps to complement the fully automated vision, we imagine genetic
improvement processes that are hinted at and directed by humans
but understood and undertaken by programming languages and
their runtimes, via interactions through the source code. We exam-
ine existing similar ideas and examine the bene�ts of embedding
them within programming languages.
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1 INTRODUCTION
Genetic Improvement (GI) aims to improve existing so�ware through
the use of optimisation techniques, most notably genetic program-
ming and other evolutionary computation techniques [5]. �e na-
ture of the improvement ranges from repairing functional faults [3,
6, 14] to optimising non-functional behavious such as execution
speed [8, 15], and energy consumption [16]. �e application of
GI also includes manipulation of program source code that has a
fundamentally impact on the way we write so�ware: automated
program specialisation [11] and so�ware transplantation [1, 4].

While stories of interesting GI applications abound, we also
note that the approach in general presents a steep learning curve.
Apart from the conversion to the somewhat unorthodox belief that
making stochastic modi�cations to a given so�ware may result in
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functional or non-functional improvements, there are many other
technical components and required knowledge involved in GI, such
as evolutionary computation, Pareto optimality, and sensitivity
analysis. Some applications of GI would also bene�t from the use
of other state-of-the-art Search Based So�ware Engineering (SBSE)
techniques such as automated test data generation [2] and fault
localisation [19], making the curver even steeper.

As the number of successful applications of GI increases, it would
be perhaps wise to consider what its adoption should look like
during the various stages of technical maturity. We posit that em-
bedding various ideas from GI into programming languages would
provide a productive form of adoption, either as an intermediate
step before the full automated future, or as a form of “human-in-the-
loop” GI [5]. �is paper aims to promote this argument by outlining
features of a potential GI-equipped programming language and
discussing the bene�ts of having GI techniques embedded at the
programming language level.

2 IMAGINING GI AT THE PROGRAMMING
LANGUAGE LEVEL

Embedding some form of adaptivity into so�ware system is not new.
Existing work include systems that can adapt memory usage [18]
or behaviours [12]. �e la�er, in particular, advocates a novel
programming paradigm (Context-oriented Programming) as a way
to e�ectively implement adaptive systems. We propose to push
down the adaptivity (i.e. elements of GI) to the next lower level,
which is the programming language itself.

Which features and language constructs would a GI-equipped
programming language contain? While our current proposal is a
future vision rather than an ongoing research, we would like to
venture describing a few possible features.

• Annotation @optimize: variables decorated with this an-
notation would be submi�ed to on-line optimisation, using
the actual execution of the host so�ware system as oppor-
tunities for �tness evaluation. �e programmer will be able
to specify what the optimisation should be with respect to.

• Keyword optional: modules marked with this keyword
will not be loaded into the memory, saving the memory
footprint of the host so�ware system, if not used by the
user for the predetermined period of time.

• Annotation @approximate: functions decorated with this
annotation will be approximated by a faster or more energy
e�cient alternative, which are learnt from observations of
input/output pairs during normal executions by Genetic
Programming or other machine learning techniques.

• Specialisation of Runtime: the GI-equipped Java Virtual
Machine or Python runtime will be able to optimise their
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internal behaviours (such as their Just In Time compilation
strategies) so that they can provide the best performance
for the programs they are running. �is would be particu-
larly helpful in a se�ing where many instances of the same
program are executed (e.g. data-centres).

�e �rst three are designed to help human developers write more
adaptive so�ware without necessarily dealing with the full learning
curve of GI. Note that each of these ideas have been implemented,
but as frameworks and libraries, and not at the programming lan-
guage level: optimisation [13, 17], program reduction [7], and ap-
proximation [10]. �e last can be also considered to be GI applied to
PL, but it would still improve the programs wri�en and executed in
the language, albeit indirectly. �is idea has also been implemented
in the form of a framework that can optimise JIT parameters for
the pypy1 Python runtime [20].

Why embed these features into programming languages instead
of providing them as additional frameworks, tools, or libraries? In
fact, there exist frameworks for runtime specialisation and in-situ
variable optimisation [20], as well as decision support tool that
helps developers to choose the most energy e�cient design [9].
However, pu�ing these features into the language level has clear
bene�ts:

• Precise Measurement: to improve anything, we need to
be able to quantitatively measure our objective [5]. Many
objectives that GI cares about (such as memory usage or
energy consumption) are more easily, and possibly more ac-
curately, measured closer to the system, i.e. within runtime
environment rather that in the user code.

• Consolidated and Smoother Learning Curve: developers
only need to learn GI-related features for one language,
in order to apply it to any program they write using that
language. �ey only need to learn the semantic behaviour
of each feature, and not how GI works internally.

• Finer and Pervasive Control: when embedded into pro-
gramming languages, the GI logic has much more perva-
sive access to program states compared to external libraries
or frameworks. �is may eliminate the need to identify
deep parameters [13, 17], allowing GI to optimise precisely
what is needed.

In summary, GI embedded in programming languages would
provide more powerful control over the program being improved
to the optimisation of GI while presenting less challenging learning
curve to its users.

3 CONCLUSION
Many of existing GI work can be recast as programming language
constructs and features. If the grand future vision for GI is the next
generation compiler, then embedding the existing GI work into
programming languages appears to be the �rst step in the right
direction.

1A Python runtime that supports JIT compilation: h�ps://pypy.org
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