
Evolutionary optimization of compiler flag selection by
learning and exploiting flags interactions

Unai Garciarena
Faculty of Informatics

University of the Basque Country (UPV/EHU)
ugarciarena001@ikasle.ehu.es

Roberto Santana
Intelligent Systems Group

University of the Basque Country (UPV/EHU)
roberto.santana@ehu.es

ABSTRACT
Compiler flag selection can be an effective way to increase
the quality of executable code according to different code
quality criteria. Evolutionary algorithms have been suc-
cessfully applied to this optimization problem. However,
previous approaches have only partially addressed the ques-
tion of capturing and exploiting the interactions between
compilation options to improve the search. In this paper
we deal with this question comparing estimation of distri-
bution algorithms (EDAs) and a traditional genetic algo-
rithm approach. We show that EDAs that learn bivariate
interactions can improve the results of GAs for some of the
programs considered. We also show that the probabilistic
models generated as a result of the search for optimal flag
combinations can be used to unveil the (problem-dependent)
interactions between the flags, allowing the user a more in-
formed choice of compilation options.

Keywords
compiler flag selection, compiler optimization, probabilistic
modeling, EDAs

CCS Concepts
•Mathematics of computing → Probability and statis-
tics; •Computing methodologies→Genetic algorithms;

Bayesian network models; Search methodologies; •Software

and its engineering → Automatic programming;

1. INTRODUCTION
Evolutionary algorithms (EAs) have been recognized as a

very effective tool for software improvement. There are a
variety of ways in which genetic improvement can help to
produce better programs, from the automatic correction of
bugs [16], to software transplantation [4], and the creation
of Pareto optimal program benchmarks with respect to dif-
ferent criteria [9]. Another scenario where EAs can help to
enhance the characteristics of the programs is during the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931696

compilation process. In many situations, executable code
can be significantly optimized at the time of compilation.
Code optimization can produce significant gains in terms of
the time needed to solve practical problems and other re-
sources (e.g. energy, memory, etc) required to solve them.

In this paper we investigate a question usually overlooked
when optimizers are applied for compilation optimization.
We analyze whether and how the information obtained dur-
ing the optimization process can produce valuable knowl-
edge about the relationships between the compilation trans-
formations. The straightforward way to use this knowledge
is by modifying the search operators in such a way that they
incorporate statistical regularities present in the best solu-
tions (e.g. pairwise dependencies between variables). This
is the basic strategy used in this paper.

Iterative compilation approaches explore the space of pos-
sible optimization sequences until an acceptable solution is
found [10]. We constrain our analysis to a particular frame-
work of compilation optimization, the selection of the right
combination of compilation flags. Usually, compilers pro-
vide a high flexibility for code quality by means of a large
set of compilation flags that allow the user to balance the
different criteria that describe the quality of the executable
code. However, this flexibility has a downside since an ex-
haustive search over all these compilation options is pro-
hibitive. Therefore, EAs and other heuristic based strate-
gies have been proposed for the compiler flag selection prob-
lem [10,13,17,25,26].

Although EAs can be a more efficient alternative than
manually setting the compilation options, they may fail when
there are strong or widespread interactions between the vari-
ables of the problem (the flags). Traditional genetic opera-
tors are usually unable to learn the relevant linkage between
the variables. Capturing and exploiting the interactions be-
tween the variables of the problems can be essential for op-
timizing the set of compilation flags. Interactions between
compilation flags can be of different types. For instance, the
addition of one flag may make irrelevant the use of another
flag for the compilation process. Furthermore, these interac-
tions can also depend on the architecture or the code being
compiled. In the more general problem of finding the most
effective set and ordering of optimization phases for code
compilation, it has been already shown that the indepen-
dence relationships between optimization phases can be used
to reduce the search space [11]. In this context, machine
learning methods have been proposed to detect and exploit
the interactions between the compilation phases [12,31].

The existence of interactions in the compiler flag selec-

tion problem, together with the known limitation of classical
EAs to deal with interactions indicate that it is a relevant
question to investigate to what extent competent genetic
algorithms can deal with the flag compilation option. In
this paper we propose the use of estimation of distribution
algorithms (EDAs) [15, 19] for the problem of compilation
flag optimization. EDAs are EAs that learn a probabilis-
tic model of the promising solutions in order to capture a
description of relevant patterns shared by these solutions.
These patterns are represented using a probabilistic graph-
ical model (PGM) where the (not necessarily linear) inter-
actions between the variables are stored as dependency re-
lationships and marginal probabilistic distributions. In ad-
dition to investigate the behavior of EDAs as optimizers,
we address the question of whether the probabilistic mod-
els capture information about the interactions between the
flags. Although an extensive list of EA approaches to com-
pilation optimization have been proposed, we did not find
any reference to previous use (and analysis) of probabilistic
modeling for this problem.

As a framework to evaluate the performance of the algo-
rithms, we optimize the compilation of code for C++ pro-
grams compiled by the GNU Compiler Collection (GCC)
on an Intel CPU processor and using Boolean flags. We
build on previous work were EAs were applied to the flag
selection problem in this context. We focus on the mini-
mization of the execution time of the programs. Previous
research [5] has shown that compilation options that gen-
erate faster code can produce as a side effect a decrease in
the energy consumed by the program. Therefore, at least
in some contexts, compiler optimization for speed translates
into gains in energy consumption [7,30].

The paper is organized as follows: In the next section we
introduce the problem of compiler flag selection and explain
the context of application used in this paper. Section 3 dis-
cusses research related to our proposal. Our probabilistic
modeling approach is explained in Section 4. Section 5 in-
troduces the experimental framework used to evaluate our
proposal and presents the numerical results. The main con-
tributions of the paper are summarized in Section 6, where
some lines for future research are also discussed.

2. COMPILER FLAG SELECTION
As previously mentioned, the question of making an in-

telligent choice of the compilation flags can be posed as an
optimization problem and as such it has been previously ad-
dressed with EAs. In this section we present the details of
the representation and fitness functions used.

We will assume a set of n Boolean flags is available. Let
X = (X1, . . . , Xn) denote a vector of discrete random binary
variables. We use x = (x1, . . . , xn) to denote an assignment
to the variables.

2.1 GCC compilation problem
GCC includes different levels of optimization, each of which

has a number of flags that can be enabled or disabled. Since
the number of GCC optimization options is large, it is in-
feasible to perform an exhaustive evaluation of all combina-
tions. We start from a set of 60 compilation options used by
Hoste and Eeckhout in [10]. They used these flags with the
GCC 4.1.2 compiler. Here, we use a more advanced com-
piler (version 4.9.2) for which two of the original 60 flags
(-fipa-type-escape and -fsplit-ivn-in-unroller) were already

deprecated.
In GCC, different optimization levels group combination

of several flags are used to define different trade-offs between
the criteria that serve to describe the quality of the code.
Below we show the three levels included in the 58 variables
specifying the total number of flags in each level for the GCC
4.9 compiler and, between parenthesis, the corresponding
number of flags from that level that are included in the set
of 58 flags we use.

• -O1: Basic optimization level. 39 (28) variables.

• -O2: Recommended optimization level. Includes all
flags existing in -O1. 73 (54) variables.

• -O3: Highest level of optimization. 82 (58) variables.

In our approach, n = 58 and each x = (x1, . . . , x58) repre-
sents the inclusion/exclusion of the corresponding flag from
the gcc compilation command.

In the selection of the compilation flags by the EAs, the
level groups are not considered, i.e. the level set to which a
given flag belongs to is not relevant for its use in the compi-
lation command. However, flags are sequentially ordered in
the EA representation according to the level groups.

2.2 Fitness function
The fitness functions computes the time spent by the ex-

ecution of the function. The evaluation of a solution com-
prises: 1) The construction of the compilation command
from the binary vector. 2) Compiling the code. 3) Execut-
ing the program. Details about the implementation of the
function are given in Section 5.

3. RELATED WORK
EAs have been previously applied to the problem ad-

dressed in this paper [10, 13, 17, 25, 26]. In all these appli-
cations, traditional crossover and mutation operators were
employed to evolve the solutions. The emphasis was on the
behavior of the algorithms and the analysis of the solution
space, and not in the role of the recombination operators in
the improvements of the algorithm. In [2], a GA was ap-
plied to find the optimal combination of flags in terms of
the time spent by the executable code. Experiments show-
ing the effectiveness of the approach were conducted using
the GCC compiler. Authors also acknowledged that the best
combination of flags was application dependent.

In [10], Hoste and Eeckhout proposed the Compiler Opti-
mization Level Exploration (COLE), a multi-objective EA-
based approach to compute Pareto optimal optimization lev-
els. They compared the set of compilation flags included in
the Pareto front approximations with the individual com-
piler optimization appearing in the standard -O1,-O2,-O3,
and -Os optimization levels. They showed that the solutions
in the Pareto front could yield better optimization levels
than GCC’s manually set options.

One of the few examples where the problem of flags in-
teractions is addressed by modifying the recombination op-
erators is the work described in [17], where a weight is as-
sociated to each gene to indicate an estimated fitness of the
corresponding optimization option to the input source code.
Weights are updated during evolution. This approach can
be seen as a naive univariate analysis of the best solutions,
similar to one of the simplest EDAs, the univariate marginal

distribution algorithm (UMDA) [20]. In the same paper, Li
et al. also proposed to fix the values of a group of positively
correlated genes for a number of generations. This is sug-
gested by the authors as a way to alleviate the disruption of
interactions inherent in the recombination operators.

Machine learning techniques have been applied in differ-
ent phases of the compiler design. In [31], regression tech-
niques are applied to predict program performance from the
settings of compiler optimization flags, associated heuristics
and microarchitectural parameters. Sanchez et al. [24] use
support vector machines to discover method-specific com-
pilation strategies in a commercial Just-in-Time compiler.
One research particularly related to our work is [1], where
Bayesian networks (a PGM class) are applied to find opti-
mal compiler transformations. In this approach, the set of
compiler transformations to be applied is represented as a
probability distribution (encoded by the Bayesian network)
to be sampled. Although this approach also uses probabilis-
tic modeling, the application domain, and also the class of
PGMs applied are different to the one used in this paper.

Methods that combine the use of machine learning tech-
niques and evolutionary algorithms have been also proposed
for compiler optimization. In [29], neural networks are evolved
for selecting which optimizations apply to the compilation
process. In two of the benchmarks evaluated, the authors re-
ported performance improvements ranging from 5% to 50%.

In addition to the direct optimization of compilation op-
tions, other approaches have applied evolutionary algorithms
[14] and other heuristic search algorithms [18] to search the
program transformation space in order to find the program
transformation sequence that produces the optimal code.

Although we did not find previous applications of EDAs
to the problem of optimizing code for compilation, these
algorithms have been applied for software testing [23].

4. MODELING DEPENDENCIES FOR COM-
PILER FLAG SELECTION

We will represent a population as a set of vectors x1, . . . ,xN

where N is the size of the population. Similarly, xl
i will rep-

resent the assignment to the ith variable of the lth solution in
the population. p denotes a distribution, p(xi) the marginal
probability Xi = xi. We focus on binary problems.

4.1 Evolutionary algorithms for flag selection
We will use three EAs to address the flag selection prob-

lem: 1) A genetic algorithm with one-point crossover and
bit-flip mutation. 2) A univariate marginal distribution al-
gorithm (UMDA) [20]. 3) A dependency-tree based EDA
[3, 27]. The three algorithms share the same general frame-
work described in Algorithm 1, only the “variators” change.
Algorithm parameters will be presented in Section 5.

4.2 EDAs
In this section we explain the main differences between

the two probabilistic modeling approaches. We denote a
probability distribution by p, the marginal probability for
XI = xI as p(xI), and the conditional probability distribu-
tion of Xi = xi given Xj = xj as p(xi | xj).

A probability distribution pT (x) that is conformal with a
tree is defined as:

pT (x) =
l

∏

i=1

p(xi|pa(xi)), (1)

Algorithm 1: EA

1 Set t ⇐ 0. Generate an initial population D0 of N ≫
0 random solutions.

2 do {

3 Select from population Dt a set DS
t of k ≤ N

points using truncation selection.

4 Generate a new population Dt+1 from DS
t apply-

ing the variator operator of choice.

5 t ⇐ t+ 1

6 } until Termination criteria are met.

where pa(Xi) is the parent ofXi in the tree, and p(xi|pa(xi)) =
p(xi) when pa(Xi) = ∅, i.e. Xi is a root of the tree. We al-
low the existence of more than one root in the PGM (i.e.
forests) although for convenience of notation we refer to the
model as tree.

The simplest example of tree distributions is the univari-
ate model, where variables are assumed to be independent,
i.e. none of the variables has a parent. For this model the
probability of a solution is the product of the univariate
probabilities for all variables:

pu(x) =

l
∏

i=1

p(xi) (2)

Our choice of the dependency tree and univariate mod-
els to investigate flag selection with EDAs is motivated by
the fact that these models represent different assumptions
about the types of interactions that exist between the vari-
ables of the problem. UMDA assumes that variables are
independent. If the problem has no interactions, or if these
interactions are sufficiently weak, then UMDA can produce
good results. Tree-EDA learns the strongest pair-wise de-
pendencies between the variables of the problem. There-
fore, if pairwise dependencies are essential to solve the prob-
lem, Tree-EDA can outperform UMDA and other EAs that
do not learn dependencies. A detailed explanation of how
UMDA and Tree-EDA learn and sample their models is be-
yond the scope and space limitations of this paper. Details
on the methods used to learn and sample the models can be
obtained from [3,20,27].

5. EXPERIMENTS
In all the experiments presented in this paper we use trun-

cation selection with parameter T = 0.5. The population
size was fixed to N = 100, and the maximum number of
generations, that was set as the termination criterion, was
ngen = 50. All programs were implemented in C++. The
fitness evaluation function involves the compilation of the
executable file and the execution of the program. This ob-
jective function was implemented by using the command
pclose of C++ that allows calls to the command line. Ex-
periments were run using an i7 Pentium processor.

To evaluate the algorithms, we use Auto/Industrial in-
stances from the MiBench benchmark1 [8] which is a freely
available set of embedded benchmarks with problems from
different domains. Our choice was motivated by the aim of
investigating the behavior of EDAs also in embedded archi-
tectures. The work presented in this paper is a first step in
1http://wwweb.eecs.umich.edu/mibench/

0 10 20 30 40 50

Generation

0

1

2

3

4

5

6

7

8

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(a) basicmath

0 10 20 30 40 50

Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(b) qsort

0 10 20 30 40 50

Generation

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(c) bitcount

Figure 1: Mean efficiency gain (percent) at each generation for the three EAs investigated (Small input).

0 10 20 30 40 50

Generation

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(a) basicmath

0 10 20 30 40 50

Generation

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(b) qsort

0 10 20 30 40 50

Generation

0

2

4

6

8

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t) UMDA

Tree-EDA

GA

(c) bitcount

Figure 2: Mean efficiency gain (percent) at each generation for the three EAs investigated (Large inputs).

4623 2 4255142419 0 1 4 8 181149445329255648 174310 6 3513544136372050 7 31343047 9 5221391233 5 5740283238 3 51162227452615
0.0

0.3

0.6

0.9

1.2

1.5

1.8

Va
ria

ble
 fr

eq
ue

nc
y

Variable frequency by algorithm
EA
Tree-EA
GA

Figure 3: Frequency of the flags found by the three EAs in all the executions.

Auto./Industrial

basicmath
qsort
bitcount
susan (smoothing)
susan (edges)
susan (corners)

Table 1: Mibench instances used for the experimental frame-
work.

that direction. The instances considered in our experiments
are shown in Table 1. Some of these applications provide
solutions to two levels of complexity of the same problem.
One considering useful simple scenarios (small), while the
other one is developed for a bigger or more complex prob-
lem (large). For all benchmarks we used two different types
of inputs of the programs corresponding to small and large
problems.

5.1 Comparison between the algorithms
Our first experiment focuses on determining the difference

between the performance of GA, UMDA, and Tree-EDA.
We ran 30 executions of each algorithm and compared their
performance in terms of the average best fitness reached by
the algorithms in all the runs.

Figure 1 shows the efficiency gain (percent) in each gener-
ation for the three EAs investigated and problems basicmath
(a), qsort (b), and bitcount (c) when the input file is small.
Similar results are shown in Figure 2 for the same prob-
lems but when the input file is large. The efficiency gain is
computed as:

eg =
f0 − ft

f0
(3)

where f0 is the fitness (elapsed time) of the best solution
in the first generation and ft is the best fitness in genera-
tion t. Since the algorithms use elitism, the best fitness is
monotonically nondecreasing function along generations.

An analysis of the charts shown in Figure 1 and Figure 2
allows a number of conclusions: 1) The EAs allow efficiency
improvements of up to 9% in some cases. 2) UMDA is never
the best choice for none of the programs considered. This
fact seems to indicate the need of capturing the dependencies
to solve the problem. 3) Tree-EDA is always the first or
second best algorithm for all the problems. It is better than
the GA for the basicmath problem, the two algorithms are
tied for problem qsort, and the GA is better than Tree-EDA
for the bitcount problem. The relatively good results of the
GA might be explained by the fact that this algorithm uses
a one-point crossover that is less disruptive than uniform
crossover or UMDA. Furthermore, the one-point crossover
might be beneficial when interacting variables are close in
the sequential representation.

For each of the six problems, we also tested for signifi-
cant differences between the algorithms. A multiple compar-
ison statistical test was conducted using the best solutions
reached in each of the 30 runs. The Kruskal Wallis test was
applied first, and the Dunn test was applied as post-hoc af-
terwards to look for statistical differences between each pair
of algorithms. Table 2 shows the p-values output by the

tests, illustrating that significant differences exist between
the algorithms. In Table 2, statistical differences, consider-
ing p = 0.01.

small UMDA vs Tree UMDA vs GA Tree vs GA

basicmath 1.555e-4 6.400e-12 1.818e-15

qsort - - -
bitcount 4.610e-09 7.797e-11 1.620e-3

large UMDA vs Tree UMDA vs GA Tree vs GA

basicmath 2.435e-5 2.300e-3 8.295e-8

qsort 3.300e-14 1.743e-13 4.316e-1
bitcount 3.375e-16 1.355e-16 8.945e-08

Table 2: Results of the statistical tests.

Another relevant issue is to determine which are the most
frequent flags found by the algorithms. Using the best so-
lutions found in each of the 30 executions for problem bit-
count large we computed the frequency of each of the 58
flags. Figure 3 shows the frequencies for all flags computed
for all EAs. There are important differences in the frequency
with which the flags are found by the algorithms. The three
flags that appeared more frequently in the best solutions
were -fschedule-insns2, -ftree-salias, and -fkeep-static-consts.
These flags attempt to optimize execution time. Instru-
tions are reordered in order to avoid executions stalls due
to required data bein unavailable. Also, memory location
accesses are analyzed. The least frequent flags were -frerun-
loop-opt, -ftree-ter, and -ftree-ch.

5.2 Analysis of the problem structure
In the next experiment we investigate whether Tree-EDA

can produce efficiency gains for the Susan program. This
is an image recognition package used for the analysis of
magneto resonance images of the brain. Among the func-
tions included are: recognizing corners, detecting edges, and
smoothing the image. In this application different inputs of
the same program can require different flag combinations.
Therefore it is an interesting benchmark to evaluate the be-
havior of the algorithm for different tasks. In this case, the
small input data is a black and white image of a rectangle
while the large input data is a complex picture [8].

Figure 4 and show the efficiency gains achieved by Tree-
EDA for the three different tasks, small and large inputs. In
this example, Tree-EDA is able to obtain gains well above
8%. These gains differ according to the task to be solved.
Higher gains in efficiency by means of flag combination op-
timization are achieved for the edge-detection task.

We used the Susan program benchmark to investigate
and compare the most frequent interactions captured by the
Tree-EDA and whether these interactions are common to
all programs or depend on the task. To compute the inter-
actions, we inspected all the trees learned by Tree-EDA in
the first 10 generations of the algorithm for all the 30 ex-
ecutions. We only used trees corresponding to the first 10
generations since much of the efficiency gains are obtained
in the first generations and because in the last generations
some spurious interactions can arise between the variables
due to genetic drift. For each problem, we calculate how
frequent is each edge (i,j) in the 300 trees considered (30
executions × 10 generations).

Figure 5 shows the heat maps with the most frequent flag
interactions for the three tasks ran by Susan program and
the large input. The main conclusion from the analysis of

0 10 20 30 40 50

Generation

0

2

4

6

8

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t)

Smoothing

Edges

Corners

0 10 20 30 40 50

Generation

0

2

4

6

8

10

E
ffi

ci
e
n

cy
g
a

in
(p

e
rc

e
n

t)

Smoothing

Edges

Corners

Figure 4: Mean efficiency gain (percent) at each generation for Tree-EDA on three different functionalities of program Susan
when a) small images are considered and b) large images are considered.

the figures is that strong interactions between the variables
arise but they are relatively few. It is important to notice
that the tree models captures a maximum of n − 1 bivari-
ate interactions between the variables. Therefore, they may
miss some of the interactions of the problem. However, the
fact that the interactions found are strong suggest that there
exist pairs of flags that have a strong contribution to the op-
timization problem. These are the pairs of flags that should
be taken into account by the user at the time of applying
the solutions found by the EAs or trying to improve them.

As an additional step we investigated whether the opti-
mal combinations of flags found for the three tasks were
sufficiently different between them so that the type of task
being solved could be identified from them. This approach
intends to characterize of the programs (or to the tasks be-
ing solved) in terms of the flags combinations. We address
this problem as a classification problem where we have three
classes, each one corresponding to one of the applications of
the Susan program: 1) Smoothing, 2) Edges, 3) Corners.
For each of them, we have the optimal combination of flags
found by Tree-EDA. The classification problem is trying to
infer the class from the analysis of the flag combinations.
We would expect that if flag combinations are unique to the
tasks, then classes can easily be recognized and the classifi-
cation accuracy will be high.

We solve the classification problem using the random for-
est classifier [6], one of the most popular classifiers used by
the machine learning community. The confusion matrices
obtained as the result of applying the classifier are shown in
Equation (4) where CM1 is the confusion matrix obtained
for problem Susan, small inputs, and CM2 is the one ob-
tained when large inputs are used. It can be seen from the
analysis of the confusion matrices that the classifier fails to
accurately recognize the classes. The accuracies are around
the expectation for a random classifier on a 3-class problem.
We also computed the feature importance for all features
(flags). This information is shown in Figure 6.

CM1 =

11 13 6
10 10 10
10 9 11

 CM2 =

5 14 11
11 11 8
8 9 13

 (4)

The figure shows that some of the flags have an impor-
tant contribution to the classification but in this particular
example this contribution is not translated into a high accu-
racy. Nevertheless, we suggest that considering classification
problem from the analysis of the optimal flag combinations
can be another way to characterize the problems.

6. CONCLUSIONS
In this paper we have proposed the use of EAs based on

probabilistic modeling to make the right choice of compila-
tion optimization options. Three EAs have been evaluated
on different instances of a real-world benchmark: A GA with
one-point crossover and bit-flip mutation, UMDA, and Tree-
EDA. Our results show that modeling the dependencies is
indeed required for an efficient optimization since UMDA,
the algorithm that assumes all variables to be independent,
produces the worst results. We found that for a number of
instances the dependency-tree based EDA strategy outper-
forms the GA with statistical significant differences.

We also analyzed the most frequent flags found by the
algorithms and the most frequent interactions identified by
Tree-EDA. In the first case, we found differences in the fre-
quencies of the flags inclusion in optimal combinations. We
also found that the number of strong interactions captured
by the trees is relatively small. More research is needed
to characterize these interactions and to develop a method
to exploit them a posteriori. Finally, we proposed the use
of a classification approach for characterizing different pro-
grams (or procedures) in terms of their associated optimal
flag combinations. In the example considered in this paper,
the classifier did not find indeed major differences between
flag combinations. However, more research is needed to ex-
plore the validity of this approach in other scenarios, e.g.
comparing different programs and not different tasks to be
fulfilled by the same program.

Although we have focused on compiler optimization with
minimization of the computation time as the goal, the same
approach could be applied to optimize other parameters that
describe the behavior of the algorithm, like the size of the
program or the energy consumption [21]. Similarly, the evo-
lutionary algorithms could be used to optimize compilation
options in different platforms. Finally, EDAs that learn

0 10 20 30 40 500

10

20

30

40

50

Large input, Smoothing

0
4
8
12
16
20
24
28
32
36

0 10 20 30 40 500

10

20

30

40

50

Large input, Edges

0
5
10
15
20
25
30
35
40
45

0 10 20 30 40 500

10

20

30

40

50

Large input, Corners

0
5
10
15
20
25
30
35
40

Figure 5: Most frequent interactions captured by Tree-EDA for the three different functionalities of program Susan when
large images are considered. a) Smoothing, b) Edges, c) Corners

1425 9 24201512572835 2 311034465636 1 5117504142 0 38552922451311162632 6 19 5 533344 4 3739 3 8 7 182148434730544923405227
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Va
ri
ab

le
 im

p
or
ta
n
ce

Variables
Susan-Small
Susan-Large

Figure 6: Feature importance found by the random forest classifier in the problem of distinguishing problems from the optimal
flag combinations.

more complex models [22,28], able to represent a wider class
of patterns of interactions between the compilation flags
could be also investigated.

7. ACKNOWLEDGMENTS
This work has been supported by the IT-609-13 program

(Basque Government) and TIN2013-41272P (Spanish Min-
istry of Science and Innovation).

8. REFERENCES
[1] A. H. Ashouri, G. Mariani, G. Palermo, and

C. Silvano. A Bayesian network approach for compiler
auto-tuning for embedded processors. In Embedded
Systems for Real-time Multimedia (ESTIMedia), 2014
IEEE 12th Symposium on, pages 90–97. IEEE, 2014.

[2] P. A. Ballal, H. Sarojadevi, and P. Harsha. Compiler
optimization: A genetic algorithm approach.
International Journal of Computer Applications,
112(10), 2015.

[3] S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
Learning the structure of the search space. In D. H.
Fisher, editor, Proceedings of the 14th International
Conference on Machine Learning, pages 30–38, 1997.

[4] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and
J. Petke. Automated software transplantation. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 257–269. ACM,
2015.

[5] D. Branco and P. R. Henriques. Impact of GCC
optimization levels in energy consumption during
C/C++ program execution. In Scientific Conference
on Informatics, 2015 IEEE 13th International, pages
52–56. IEEE, 2015.

[6] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[7] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III,
K. V. Palem, K. Puttaswamy, and W.-F. Wong. The

emerging power crisis in embedded processors: what
can a poor compiler do? In Proceedings of the 2001
international conference on Compilers, architecture,
and synthesis for embedded systems, pages 176–180.
ACM, 2001.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, pages 3–14.
IEEE, 2001.

[9] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the Pareto program surface using genetic
programming to find better programs. In Proceedings
of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–14. ACM,
2012.

[10] K. Hoste and L. Eeckhout. COLE: compiler
optimization level exploration. In Proceedings of the
6th annual IEEE/ACM international symposium on
Code generation and optimization, pages 165–174.
ACM, 2008.

[11] M. R. Jantz and P. A. Kulkarni. Exploiting phase
inter-dependencies for faster iterative compiler
optimization phase order searches. In Compilers,
Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on, pages
1–10. IEEE, 2013.

[12] P. Joseph, M. Jacob, Y. Srikant, and K. Vaswani.
Statistical and machine learning techniques in
compiler design. The compiler design handbook,
optimization and machine code generation. CRC
Press, Boca Raton, 2008.

[13] J. Kukunas, R. D. Cupper, and G. M. Kapfhammer.
A genetic algorithm to improve linux kernel
performance on resource-constrained devices. In
Proceedings of the 12th annual conference companion
on Genetic and evolutionary computation, pages
2095–2096. ACM, 2010.

[14] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan.
Finding effective optimization phase sequences. In
ACM SIGPLAN Notices, volume 38, pages 12–23.
ACM, 2003.

[15] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms. A New Tool for Evolutionary
Computation. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002.

[16] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Software Engineering (ICSE), 2012 34th
International Conference on, pages 3–13. IEEE, 2012.

[17] S.-C. Lin, C.-K. Chang, and S.-C. Lin. Automatic
selection of GCC optimization options using a gene
weighted genetic algorithm. In Computer Systems
Architecture Conference, 2008. ACSAC 2008. 13th
Asia-Pacific, pages 1–8. IEEE, 2008.

[18] S. Long and G. Fursin. A heuristic search algorithm
based on unified transformation framework. In
Parallel Processing, 2005. ICPP 2005 Workshops.

International Conference Workshops on, pages
137–144. IEEE, 2005.

[19] J. A. Lozano, P. Larrañaga, I. Inza, and
E. Bengoetxea, editors. Towards a New Evolutionary
Computation: Advances on Estimation of Distribution
Algorithms. Springer, 2006.

[20] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions I. Binary
parameters. In Parallel Problem Solving from Nature -
PPSN IV, volume 1141 of Lectures Notes in Computer
Science, pages 178–187, Berlin, 1996. Springer.

[21] J. Pallister, S. J. Hollis, and J. Bennett. Identifying
compiler options to minimize energy consumption for
embedded platforms. The Computer Journal,
58(1):95–109, 2015.

[22] M. Pelikan. Hierarchical Bayesian Optimization
Algorithm. Toward a New Generation of Evolutionary
Algorithms, volume 170 of Studies in Fuzziness and
Soft Computing. Springer, 2005.

[23] R. Sagarna, A. Mendiburu, I. Inza, and J. A. Lozano.
Assisting in search heuristics selection through
multidimensional supervised classification: A case
study on software testing. Information Sciences,
258:122–139, 2014.

[24] R. N. Sanchez, J. N. Amaral, D. Szafron, M. Pirvu,
and M. Stoodley. Using machines to learn
method-specific compilation strategies. In Proceedings
of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization,
pages 257–266. IEEE Computer Society, 2011.

[25] T. Sandran, N. Zakaria, and A. J. Pal. An optimized
tuning of genetic algorithm parameters in compiler
flag selection based on compilation and execution
duration. In Proceedings of the International
Conference on Soft Computing for Problem Solving
(SocProS 2011) December 20-22, 2011, pages 599–610.
Springer, 2012.

[26] N. Sankar Chebolu and R. Wankar. A novel scheme
for compiler optimization framework. In Advances in
Computing, Communications and Informatics
(ICACCI), 2015 International Conference on, pages
2374–2380. IEEE, 2015.

[27] R. Santana, P. Larrañaga, and J. A. Lozano. Protein
folding in simplified models with estimation of
distribution algorithms. IEEE Transactions on
Evolutionary Computation, 12(4):418–438, 2008.

[28] S. Shakya and R. Santana, editors. Markov Networks
in Evolutionary Computation. Springer, 2012.

[29] G. Sher, K. Martin, and D. Dechev. Preliminary
results for neuroevolutionary optimization phase order
generation for static compilation. In Proceedings of the
11th Workshop on Optimizations for DSP and
Embedded Systems, pages 33–40. ACM, 2014.

[30] M. Valluri and L. K. John. Is compiling for
performance compiling for power? In Interaction
between Compilers and Computer Architectures, pages
101–115. Springer, 2001.

[31] K. Vaswani, M. J. Thazhuthaveetil, Y. Srikant, and
P. Joseph. Microarchitecture sensitive empirical
models for compiler optimizations. In Code Generation
and Optimization, 2007. CGO-07. International
Symposium on, pages 131–143. IEEE, 2007.

