From Deep Learning to
Human Judgments:
Lessons for Genetic Improvement

Westley Weimer

University of Michigan
(11th International Workshop on Genetic Improvement, 9 July 2022)

Outline (45+15 minutes)

An Existential Crisis?

e Summary of Recent Advances

o Generative Pre-Trained Transformers
e Concerns This talk will provide a gentle introduction to

these topics

o Cost
o Novelty We will benefit from a vigorous discussion!
o Problem Statement
o Evaluations Many of you may be familiar with other
e Recommendations: aspects of these issues

o Deception, Eyes, Algorithms, etc.
Industrial Deployments
e Summary

Program Improvement, Al and Machine Learning

e Increasing use of techniques associated with Al and ML (e.g., neural
networks, language models, machine translation approaches, etc.) for
program repair and improvement

e Researchers from other backgrounds (e.g., EC, SE, PL) have expressed

significant concerns
o Heard from PC members, collaborators and non-collaborators, multiple countries, etc.

e Example: “They will descend like a plague of locusts, convince everyone it
is another problem defeated by their hammer, and then move on.”

Fear, Uncertainty, and Doubt?

e Important to separate out reactionary resistance to change vs. more

nuanced critiques
o If these techniques really do entirely solve this problem, excellent!

o But do they entirely solve this problem?

e Common critiques
o Problem formulation: assuming perfect fault localization
Assessment and evaluation: internal metrics

@)
o Foundational limitations: lack of novel synthesis
o Moral accessibility concerns: monetary cost of training models excludes participation

Challenge and Opportunity

“The rise of language models raises many interesting connections [...] At the
most basic or unit level, there is a dire need to improve the code generated by
language models like Codex [...] a need to understand the kind of semantic
errors that lurk in such auto-generated code [...] value in proposing analysis or
fixing mechanisms specifically for auto-generated code [...] However, there is
the opportunity to expand on these prompts to capture the power of program
synthesis. Program synthesis, or programming by example approaches, differ
from language model-based approaches primarily in the ability to synthesize
code which was never seen before.”

Abhik Roychoudhury, NUS (SemFix, Angelix, Concolic Program Repair, etc.)

https://nus-apr.github.io/

e

Mark Chen ' Jerry Tworek*' Heewoo Jun’' Qiming Yuan’' Henrique Ponde de Oliveira Pinto '
Jared Kaplan~? Harri Edwards' Yuri Burda' Nicholas Joseph? Greg Brockman' Alex Ray' Raul Puri'
® O e nAI Cod eX -iS a G e n e rat-ive Gretchen Krueger ! Michael Petrov' Heidy Khlaaf® Girish Sastry' Pamela Mishkin' Brooke Chan'
p Scott Gray' Nick Ryder' Mikhail Pavlov' Alethea Power' Lukasz Kaiser! Mohammad Bavarian'
Clemens Winter ! Philippe Tillet! Felipe Petroski Such! Dave Cummings' Matthias Plappert '
Q Fotios Chantzis' Elizabeth Barnes' Ariel Herbert-Voss' William Hebgen Guss' Alex Nichol' Alex Paino '
P re = t ra] n ed Tra n Sfo rm e r (G PT) Nikolas Tezak ! Jie Tang' Igor Babuschkin' Suchir Balaji' Shantanu Jain' William Saunders '
Christopher Hesse! Andrew N. Carr' Jan Leike' Jos J Vedant ! Evan Morikawa'
Alec Radford" Matthew Knight! Miles Brundage' Mira Murati' Katie Mayer' Peter Welinder '

a p p roac h i n Wh i C h a n e u ra l n etwo rk Bob McGrew ! Dario Amodei am McCandlish? Tlya Sutskever' Wojciech Zaremba '

Abstract 1. Introduction

based On a deep lea rni ng model iS Scalable sequence prediction models (Graves, 2014;

2 < = Vaswani et al., 2017; Child et al., 2019) have bec d
We introduce Codex, a GPT language model fine- e ¢ ey g) have bewmg 2
general-purpose method for generation and representation

trained on an enormous corpus of and sody 1 Pothon code wring capabiides, 16aming n many domain,including rtra anuage po-

A distinc it ersi f 3 vers %
distinct production version of Codex powers)18: Radford et a

GitHub Copilot. On HumanEval, a new evalua-
text tion set we rel to measure functional correct-
ness for synthesizing programs from docstrings,
our model solves 28.8% of the problems, while
~po A

e |t can produce prose with —

human-equivalent fluency A.L IS MaStering Language.
should We Trust What It Says?

OpenAl's GPT-3 and other neural nets can now write original
prose with mind-boggling fluency — a development that could
have profound implications for the future.

audio and speech processing (Oord et al 16; 2018; Dhari-
wal et al., 2020; Baevski et al., 2020), biology (Alley et al.,

GitHub Copilot

e Beyond natural language,
models can be trained and
applied to source code

e Using NLP on code at scale
is not new, but the way it
is playing out now is

n the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu
devanbu@cs.ucdavis.edu

Unpublished version of ICSE 2012 paper; with expanded future work section

Enjoy! Comments Welcome.

Abstract— anguages like English are rich, complex,
and powerful. ly ceful use of languages

es are far simpler and i o repetiti
dictable. In fact, these utterances can be very usefully modeled
using modern statistical methods. This fact has led to the phe-
nomenal success of statistical approaches to speech recognitior
natural language translation, question-answering, and text

ing and comprehension.

We begin with the conjecture that most software is also natu-
ral, in the sense that it is created by humans at work, with all
the attendant constraints and limitation: d th like natu-
ral language, it s also likely to be repetitive and predictable. We
then proceed to ask whether a) code can be usefully modeled by
statistical language models and b) such models can be leveraged
to support software engineers. Using the widel

what people actually write or say. In the 1980 fundamental
\hlll to corpus-based, mmvmal/v rigorous methods occurred.
availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple lan-
guages', along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as sta

ng phase
natural language may be complex and admit a
great wealth of expression, but what people write and say is
largely regular and predictable.
Our central hypoth that the same argument applies to
software:

I8 sentimentsis 0 Write.

our Al pair programmer

OpenAl Cc and entire fu n
real-time, right fi
Start my free trial > Explore docs

LU
)

#! /usr/bin/env ts-node

import { fetch } from “fetch-h2";

nc function isPositive(text: string): Promise<boolean> {

const response = await fetch(http://text-processing.com/api/sentiment/™, {
method: "POST",
body: ~text=${text}"
headers: {

"Content-Type": "application/x-www-form-urlencoded",

}
& copilot
3 Replay

Trained on billions of lines of code, GitHub Copilot
turns natural language prompts into coding
suggestions across dozens of languages.

Facebook TransCoder

e The TransCoder technique from
Facebook Al Research uses a
transformer (encoder-decoder)
architecture to translate source
code between languages

e |t predates the emphasis on
Codex, and its specific emphasis
on readability (and evaluations)
makes it relevant for a Genetic
Improvement discussion

Unsupervised Translation of Programming Languages

Marie-Anne Lachaux* Baptiste Roziere” Lowik Chanussot
Facebook Al Research Facebook Al Research Facebook Al Research
malachaux @fb.com Paris-Dauphine University lowik @fb.com
broz@fb.com

Guillaume Lample
Facebook AI Research
glample @fb.com

The applications of neural machine translation (NMT) to programming languages have been limited
so far, mainly because of the lack of parallel resources available in this domain. In this paper,
we propose to apply recent approaches in unsupervised machine translation, by leveraging large
amount of monolingual source code from GitHub to train a model, TransCoder, to translate between
three popular languages: C++, Java and Python. To evaluate our model, we create a test set of 852
parallel functions, along with associated unit tests. Although never provided with parallel data, the
model manages to translate functions with a high accuracy, and to properly align functions from the
standard library across the three languages, outperforming rule-based and commercial baselines by
a significant margin. Our approach is simple, does not require any expertise in the source or target
languages, and can easily be extended to most programming languages. Although not perfect, the

For TransCoder, we consider a sequence-to-sequence (seq2seq) model with attention [44},[9]], com-

posed of an encoder and a decoder with a transformer architecture [45]]. We use a single shared

Example in Program Repair: CoCoNuT

CoCoNuT: Combining Context-Aware Neural Translation

PY We now have all Of the bu]ld]ng Models using Ensemble for Program Repair

Thibaud Lutellier Hung Viet Pham Lawrence Pang

b l k t l d 5 t l t A P R tlutelli@uwaterloo.ca hvpham@uwaterloo.ca lypang@edu.uwaterloo.ca
OC S O a p p y] reC y O University of Waterloo University of Waterloo University of Waterloo
Waterloo, ON, Canada Waterloo, ON, Canada ‘Waterloo, ON, Canada
.
e The popular CoCoNuT project uses Al Ui b
yitong li@uwaterloo.ca m44wei@uwaterloo.ca lintan@purdue.edu

University of Waterloo University of Waterloo Purdue University

a n d d e e p l e a rn.i n g a n d V.i eWS p r. O gr a m Waterloo, ON, Canada Waterloo, ON, Canada West Lafayette, IN, USA
. . KEYWORDS
repa] I as tranSlat] ng from buggy to Automated program repair, Deep Learning, Neural Machine Trans-
COI'r'eCt source Code lation, Al and Software Engineering
.« . APR can be seen as a translation from buggy to correct source
® It re pO I’tS Vel’y Strong resu ltS) f]X] ng code. Therefore, there is a unique opportunity to apply NMT tech-

niques to learn from the readily available bug fixes in open-source

509 bugS (] nc. 309 nOt flxed by 27 repositories and generate fixes for unseen bugs.
Oth er base l-i ne tec h n-iq ues) across 4 CoCoNuT, which uses ensemble learning on the combination of

convolutional neural networks (CNNs) and a new context-aware
l neural machine translation (NMT) architecture to automatically fix
an g u ageS bugs in multiple programming languages. To belter represent the

context of a bug, we introduce a new context-aware NMT archi-
tecture that represents the buggy source code and its surrounding
context separately. CoCoNuT uses CNNs instead of recurrent neu-
ral networks (RNNs), since CNN layers can be stacked to extract

Training is Critical

e Training large models really matters, as the Language Models are Few-Shot Learners
GPT-3 paper notes: “we show that scaling
up language models greatly improves o Rt i e
task-agnostic, few-shot performance,
sometimes even reaching competitiveness
with prior state-of-the-art fine tuning

approaches”

o That is, a model trained on a large-enough corpus
matches or outperforms approaches specialized
for specific tasks

Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray

OpenAl Codex shows the limits of i
large language models

10

The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao Stella Biderman Sid Black Laurence Golding

T rai n i n g 'i S EX p e n S 'i Ve Travis Hoppe Charles Foster Jason Phang

Anish Thite Noa Nabeshima Shawn Presser

EleutherAl
contact@eleuther.ai

GPT-3 was trained on 50x more than GPT-2 (600 GB) resulting in a 175
Billion parameter model. GPT-J was trained an 800 GB dataset. Copilot was
trained on billions of lines of code.

The Codex paper notes “First, Codex is not sample efficient to train [...]
The original training of GPT-3-12B consumed hundreds of petaflop/s-days of
compute, while fine-tuning it to create Codex-12B consumed a similar
amount of compute. This training was performed on a platform (Azure) that
purchases carbon credits [...]”

Newer datasets (e.g., C4) are larger, with maintainers directly
recommending the use of distributed cloud services for their use.

11

Training Concerns

e As a result, many researchers are morally concerned about the training
costs (etc.) required for these techniques going forward

e Beyond environmental and “fairness in Al”’ concerns, my informal summary:
o A generic model trained on a large corpus outperforms prior research
o Training sizes have increased dramatically even within the last two years
o Modern peer review de facto requires an X% improvement over the state of the art
o Researchers need publications (e.g., for tenure or for students)

e Therefore, less-resourced researchers cannot afford to participate in fields

dominated by such models
o Both cannot afford the cloud computing training time
o And also cannot afford to do “pure research” and then not get publications

e COverheard: “Soon only big companies will be able to participate.”

12

Novel Code Creation Concerns

e Approaches that generate based on pre-training are not suitable for creating
new code not present in the training data

o This is a nuanced claim, since they can rearrange trained words in different orders
o GPT is good at “using novel words in a sentence after seeing them defined only once”
e By contrast

o A semantics-based approach like SemFix or Angelix can create unseen code (e.g., by solving
logical or arithmetic constraints)

o A template-based approach may create unseen code via instantiation (but see “nuanced”)
e The impact of this is uncertain (CoCoNuT success vs. ~50% upper bound)

Do the Fix Ingredients Already Exist?
An Empirical Inquiry into the Redundancy Assumptions of
Program Repair Apprccode. For example, as many as 52% of commits are com-
posed entirely of previously-existing tokens. Our results
Matias Martinezt Westley Weimer* Martin Monperrus?

+ University of Lille & INRIA, France t University of Virginia, USA

(K

Problem Statement Concerns

In NLP settings, the problem is often to produce the text that comes next

o Given these X tokens, what should the next Y tokens be?
o Others are possible (e.g., translate these X tokens from language A into language B)

This can be cast naturally to program repair or improvement
Informally: “Delete the buggy tokens, then given all of the previous tokens
in the program before the bug, what new code should be placed there?”

This formulation assumes perfect fault localization

o In practice, fault localization is difficult in many contexts
m Some security bugs (e.g., cross-site scripting or SQL code injection), some
multi-threaded bugs, some entire domains (e.g., Verilog circuit designs), etc.

14

Fault Localization in Recent Evaluations

e The CoCoNuT paper, for example,
describes using perfect fault
localization to admit a fair
comparison between

generate-and-validate techniques
o To me, that per se is quite reasonable

e The transitive argument is tricky

o Ref [49] there is Liu et al.:

o The paper calls out that it only applies
to template-based tools and that
constraint-based tools (e.g., ACS,
Nopol) were not equally sensitive

o Would GPT approaches be impacted
more or less?

al. [29]. However, we delimitate its validity to template-based repair

tools. Other tools, e.g., constraint-based repair tools such as ACS or

the buggy file and method are known. Finally, Perfect FL-based
techniques assume that the perfect localization of the bug is known.
According to recent work [46, 49], this is the preferred way to
evaluate G&V approaches, as it enables fair assessment of APR
techniques independently of the fault localization approach used.

On the Efficiency of Test Suite based Program Repair

A Systematic Assessment of 16 Automated Repair Systems for Java Programs

Chi

Dongsun Kim Peng Wu
i wuj 5

Jacques K

Fault localization is an important step in a repair pipeline. Its false
positives, however, have a significant impact on both repairability
and repair efficiency. In particular, we found that accurately local-
izing the bug can reduce the number of generated patches by an
order of magnitude, thus drastically enhancing efficiency. From the
perspective of repairability, better fault localization will increase the
probability to generate correct patches (i.e., the correctness ratio).

Evaluation Metrics

e In NLP domains, metrics such as ROUGE and BLEU and Perplexity are used

o Recall-Oriented Understudy for Gisting Evaluation looks at the overlap of sequences of
words between the reference and the output

o BiLingual Evaluation Understudy uses sequence precision and brevity between reference
sentences and output sentences

o Perplexity measures how well a probability distribution predicts a sample, often in a “bits
required per word” sense (“is this word common or expected here?”)

o Reference match measures perfectly matching the ground truth reference

e Metrics like ROUGE are syntactic, not semantic (e.g., do not handle
synonyms or meaning)

o Human1: “The cat is on the mat.” Human2: “There is a cat on the mat.”
o Candidate3: “There is a cat on the mat.” BLUE scoreis 7/7 = 1.0
o Candidate4: “Mat the cat is on a there.” BLUE score is 7/7 = 1.0

16

Appropriate Metric Selection

e To be clear: NLP metrics may be entirely appropriate in many situations
o Comparing algorithmic advances between models

o Researchers in another discipline first considering this problem domain
o Elucidating internal algorithm behavior

e Just as we might measure “number of generations to produce a patch” as

well as “number of programs improved”
o An end user will care more about “number of programs improved”
o But we, as researchers, may use information about a population search as a function of
generation to guide internal decisions, study convergence, etc.
o Example: early GenProg papers at GECCO did just that
o Danger: “X uses fewer generations than Y so X is better than Y”

e Examples are illustrative of popularity, not “call outs”

Alternatively, since APR is analogical to the NLP task of neural
machine translation, it can be evaluated with the Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) and Bilingual Eval-
uation Understudy (BLEU) NLP metrics [14, 34], and their exten-
sions [30, 35]. In the context of vulnerability repair, ROUGE scores
evaluate the patch based on the number of occurrences of n-grams
from the known repaired code (reference sequence) in the patch
(generated sequence). By contrast, BLEU shows n-gram precision of

B. Injection of Code Mutants (MG)

Looking at Fig. 8] we can observe that using T5 to generate
mutants allows to obtain much more accurate results than
the baseline, with the Accuracy@1 improving by 11%, with
1,240 additional perfect predictions (+62% as compared to the
baseline). The average BLEU score improves by ~0.01 on top

Evaluation Mot d ~F "“l" =~ ~~~4 regults already obtained by the baseline (i.e.,
valuation Metrics We conduct evaluations on rovements in BLEU score can still indicate

both code repair and commit message generation. j the quality of the generated solutions [69)].
For the code repair, we use exact match accuracy rence time (Table [VI), we observed similar
(Chen et al., 2018) to measure the percentage of the to the BF task on the BF .- dataset: with

We employ different metrics for evaluating the repair sugges-
tions.

Perplexity. Perplexity [4] measures how well a model predicts
samples. Low (e.g., single digit) perplexity values indicate the model
is good at predicting a given sequence.

BLEU. The next metric we use to assess the generated output
of the model is BLEU [37]. BLEU is a well-known and popu-
lar metric for automatically evaluating the quality of machine-
translated sentences. It has been shown to correlate well with hu-
man judgments [7, 17]. BLEU calculates how well a given sequence
is matched with an expected sequence in terms of the actual to-
kens and their ordering using an n-gram model. The output of the
BLEU metric is a number between 1-100. For natural language
translations, BLEU scores of 25-40 are considered high scores [47].

Syntactic Validation. For validating the suggestions for syntacti-
cal correctness, we generate a lexer and parser from our Delta gram-
mar through ANTLR4. We pass each inferred suggestion through
the Delta lexer/parser. This way, we assess whether the model gen-
erates suggestions that conform to the grammar of the expected
resolution changes. The output is binary, i.e., either the suggestion

is valid or invalid.

predicted fixed code that are exactly matching the ge inference time is 0.31s, w Besides perplexity, we consider two evaluation metrics to mea-
truth fixed code. In addition, we also introduce the © Dot report perfect predict sure offline performance of the code sequence completion sys-
BLEU-4 score (Papineni et al., 2002) as a supple- "°t "P°" ted in the original tem: the Recall-Oriented Understudy for Gisting Evaluation score
mentary metric to evaluate their partial match. For (ROUGE) [33] and the Levenshtein similarity.

Program Repair and Improvement Without Tests?

e One of the first papers to use such models but also consider running the
resulting code against tests was Facebook’s TransCoder (9/2020)

The majority of studies in source code translation use the BLEU score to evaluate the quality of
generated functions [1, 10} 22} 36|, or other metrics based on the relative overlap between the tokens
in the translation and in the reference. A simple metric is to compute the reference match, i.e.
the percentage of translations that perfectly match the ground truth reference [12]. A limitation of
these metrics is that they do not take into account the syntactic correctness of the generations. Two
programs with small syntactic discrepancies will have a high BLEU score while they could lead to

very different compilation and computation outputs. Conversely, semantically equivalent programs
with different implementations will have low BLEU scores. Instead, we introduce a new metric, the
computational accuracy, that evaluates whether the hypothesis function generates the same outputs
as the reference when given the same inputs. We consider that the hypothesis is correct if it gives the
same output as the reference for every input. Section[B]Jand Tabled]in the appendix present more
details on how we create these unit tests, and give statistics about our validation and test sets.

e From the language model perspective, tests were novel and uncommon

GPT Evaluation With Tests?

e While TransCoder is a different problem (translation, not repair or
improvement), the “computational accuracy” of 25-75%

Table 6: Training data ablation study - with and without code comments. We compare the computational
accuracy of TransCoder for different training sets, where we either keep or remove comments from source code
training data. We give results for different beam sizes. When translating from C++ to Python, from Java to
C++ and from Java to Python, keeping comments in the training set gives better results. In the other directions,
keeping or removing comments does not have a significant impact on the performance.

Python — Java
No Yes No Yes No Yes
Beam 1 62.2 60.9 | 40.8 44.5 76.8 80.9 | 46.4 35.0 34.1 32.2 33.9 24.7
Beam 5 71.6 70.7 | 54.0 58.3 85.6 86.9 | 58.5 60.0 46.4 44.4 46.0 44.3
Beam 10 73.6 73.4 | 57.9 62.0 88.4 89.3 | 62.9 64.4 50.9 49.6 50.3 51.1
Beam 25 75.3 74.8 | 64.6 67.2 89.1 91.6 | 66.7 68.7 56.7 57.3 56.3 56.1

With Comments | No Yes No Yes No Yes

C++ — Java ‘ C++ — Python | Java — C++ ‘ Java — Python | Python — C++

e ...is more like what we see from non-GPT program repair

20

The Lens of Construct Validity

Construct validity is the appropriateness of inferences made on the basis of
observations or measurements (often test scores), specifically whether a
test can reasonably be considered to reflect the intended construct. It

subsumes content and criterion validity.
o In this context, informally: are you measuring what you say you’re measuring?

Example: You conduct a human study in which you show participants
snippets of code and ask them comprehension questions. You use their
times and accuracies to make inferences about code readability. However,
a threat to the construct validity of those results relates to whether you are
measuring readability or complexity.

21

Two Countries Divided By A Common Language

e Approach X is better than approach Y at the program repair task

o Better than
m “Produces token sequences yielding higher ROUGE (etc.) scores w.r.t. a reference”
m “Produces more patches that pass all test cases”

o Program repair task
m “Given a program prefix and perfect fault localization and a large trained model,

produce a patch using previous code”

m “Given a program and test cases, produce a patch that possibly uses new code”

e Informally, one anxiety making the rounds in our community is that program

committees and grant panels may be too inundated to make the distinctions

o And thus mistakenly conclude that a claim about “Better_definition1” is really a claim about
“Better_definition2”, etc.

22

We evaluated a state-of-the-art
encoder-decoder model via a human study of
45 professionals and students

Metrics like BLEU did not necessarily match

human intuition
o In the example on the right, the summary has a
moderately high score

Participants performed significantly better (p
= 0.029) using human-written summaries
versus machine-generated summaries
Participants’ performance showed no
correlation with the BLEU and ROUGE scores
often used to assess the quality of
machine-generated summaries

Recommendation: More Human Studies

A Human Study of Comprehension and Code Summarization

Sean Yashmeet Gambhir Alexander LeClair Zachary Eberhart
University of Michigan Univer: otre Dame Univa f Notre Dame
ygambhir@umich.edu aleclair@nd.edu zeberhar@nd.edu

y Weimer 7in Leach Yu Huang
higan University of Michigan Univer: fichigan

weimerw@umich.edu ‘h@umich.edu yhhy@umich.edu

Human Summary: sorts the specified range of the receiver into
ascending numerical order

Machine Summary: sorts the receiver according to the order of
the order by the

6.5 Results Summary

First, we find that human-written summaries help developers com-
prehend code significantly better than do machine-generated sum-
maries. Second, developer perception of summary quality, whether
human-written or machine-generated, did not significantly cor-
relate with developer comprehension—developers cannot assess
which summaries are most helpful. Finally, we found that BLEU
and ROUGE scores were significantly uncorrelated (i.e., p = 0.151
with p = 0.0004 for ROUGE and p = 0.140 with p = 0.0008 for
BLEU) with developer comprehension—developers do not bene-
fit from summaries with higher-valued BLEU or ROUGE scores.
This indicates a need for new metrics for measuring automatic
summarization techniques.

Recommendation: Human Studies, Deception, Context

“Yours is Better!”

e One challenge in comparative human IRl Saa s Rl

Nicola Dellt Vidya Vaidyanathan! Indrani Medhi? Edward Cutrell® William Thies®

studies is that non-anonymized i o G A O L
presentations may result in bias

e A human study may employ deception
(e.g., describing a patch as written by
a human instead of a machine, or Imaging and Eye-Tracking: Genders, Humans, and Machines

Kevin Leach Zohreh

vice-versa), with a debriefing e

nich.edu zohrehsh@umich.edu

e Alternatively, real-world contexts, s (RO i o
SUCh as deployments on G]tHUb’ How to Design a Program Repair Bot?
prov-lde end'tO'end assessments Insights from the Repairnator Project

Simon Urli Zhongxing Yu
University of Lille & Inria Lille, France University of Lille & Inria Lille, France
simon.urli@inria.fr zhongxing. yu@inria.fr

Lionel Seinturier Martin Monperrus
University of Lille & Inria Lille, France KTH Royal Institute of Technology, Sweden
lionel.seinturier@inria.fr martin.monperrus@csc.kth.se

Recommendation: Eye Tracking

Eye tracking is becoming an increasingly

common addition to human studies
o The equipment is inexpensive
o It can often detect where attention is paid at
the level of individual words or syntax
o It provides a validated way of assessing
cognitive load (via pupil dilation, etc.)
As deep learning models produce code
or text, and as NLP metrics largely
ighore semantics, measuring where

humans pay attention is quite relevant

A Practical Guide on Conducting Eye Tracking Studies
in Software Engineering

Zohreh Sharafi - Bonita Sharif -
Yann-Gaél Guéhéneuc - Andrew Begel -
Roman Bednarik - Martha Crosby

Determining Differences in Reading Behavior Between Experts and Novices
by Investigating Eye Movement on Source Code Constructs During a Bug
Fixing Task

Salwa, D., Aljehane

Kent State University, Department of Computer Science, saljehan@kent.edu

Bonita, Sharif

University of Nebraska - Lincoln, Department of Computer Science and Engineering, bsharif@unl.edu

Jonathan, ., Maletic

Kent State University, Department of Computer Science, jmaletic@kent.edu

Eyes on Code: A Study on Developers’ Code

Navigation Strategies

Zohreh Sharafi, lan Bertram, Michael Flanagan, and Westley Weimer

25

Recommendation: Algorithms

Using Genetic Improvement & Code Transplants
to Specialise a C++ Program to a Problem Class

Justyna Petke!, Mark Harman'!, William B. Langdon®, and Westley Weimer?

In code summarization work, we used an “encoder + decoder + additional
encoder for the AST” model to incorporate program structure

Such AST-inclusive approaches may form a natural bridge to the
grammar-based GP work of Langdon and others

We need algorithms to take the output of deep learning models (e.g.,
Copilot) and improve it

We might focus on the synthesis and discovery of novel code, leaving simple

bugs that can be fixed with existing ingredients to Al
o Just as we may not leave null pointer errors to program repair approaches

Target fault localization for transformer approaches or, dually, target
domains for which perfect fault localization is unreasonable

26

Fixing Bugs in Your Sleep: How Genetic Improvement Became
an Overnight Success

Program Repair Deployments

Janus Manager (2017): smaller, fixes
Python Exceptions e

jobader@fb.com andrewscott@fb.com

Michael Pradel Satish Chandra

Facebook SapFix, Getafix (2018-19): SapFix: Automated End-to-End Repair at Scale
60MLOC+, mostly Null Pointer Exceptions

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, A. Scott
Fa °

On ihe Introduction of

Bloomberg (2021): uninitialized Atomatle ProprEniRepaitin
variables, other templates, 48% dev Bloomberg
accept rate

layori McBello, Kevin Kells, Matthew Pagano, Rafal

Fujitsu (2016-2017): method invocation
b u gs , ~ 50% acce pta n Ce ra te , red u CeS d ev Fujitsu Laboratories Introduces Al Based Automatic Patch

Generation Technology

.
t'l m e by ~ 2 9% Enhances efficiency of business application software development by

learning from a corpus of all archived bug reports and bug patches
Fujitsu Laboratories of America Inc.,Fujitsu Laboratories Ltd.

Mountain View, CA, October 11, 2017 — At the Fujitsu Laboratories Advanced Technology
Symposium, Fujitsu Laboratories of America, Inc. (FLA) and Fujitsu Laboratories Limited (FLL) today
announced the availability of new technology to automatically generate patches for bugs in object-

Deployment Commonalities

Most focus on a single type of defect (e.g., Null Pointer Exceptions, OO
Method Invocation errors, etc.) via fix patterns

o For example, while Getafix handles multiple types of bugs,

804/1264 were Null Pointer Exceptions

“Bloomberg views the readability of a fix and future-proofing of fixes as
a fundamental and crucial part of the overall repair process”
Acceptance rates are uniform: ~50% at Bloomberg, Facebook, and
Fujitsu

Potential implication: near-future deployments may not require >50%
success rate and may favor readability and simplicity

28

Trust and Acceptability

Surveying 100 developers, Noller et al.
found that manual review and test cases
were critical to acceptancing of APR

The emphasis on manual review
motivates the inclusion of human studies
(including advanced approaches like eye
tracking or deception) in evaluations
The emphasis on test cases motivates
the nuanced use of extrinsic metrics in
evaluations

Trust Enhancement Issues in Program Repair

Yannic Noller* Ridwan Shariffdeen
National University of Singapore National University of Singapore
Singapore Singapore

yannic.noller@acm.org ridwan@comp.nus.edu.sg

Xiang Gao® Abhik Roychoudhury
National University of Singapore National University of Singapore
Singapore Singapore

gaoxiang@comp.nus.edu.sg abhik@comp.nus.edu.sg

RQ1 - Acceptability of APR: Additional user-provided arti-
facts like test cases are helpful to increase trust in automatically
generated patches. However, our results indicate that full de-
veloper trust requires a manual patch review. At the same time,
test reports of automated dynamic and static analysis, as well as
explanations of the patch, can facilitate the reviewing effort.

RQ2 - Impact on Trust: Additional test cases would have a
great impact on the trustworthiness of APR. There exists the

possibility of automatically generating tests to increase trust in
the auto-generated patches.

AS

Summary

The application of neural network deep learning language models to

program improvement, completion and repair tasks has surged
o Codex, Copilot, GPT, Transcoder, etc., are popular examples

Concerns and challenges abound
o Training costs may be exclusionary, novel synthesis is uncertain, perfect fault localization is
often assumed, and intrinsic metrics omit semantics (such as running the program)
o Informally, there is a fear that PCs and PMs will misinterpret results

At the same time, opportunities exist
o How we conduct peer review, clarity of communication, human studies (e.g., eye tracking
and deception), and algorithmic advances (e.g., grammars, novelty, FL)
o Real-world deployments focus on simplicity, humans reading patches, tests, and trust
m Perhaps fear has misdirected our recent attention away from end-user needs

30

