Dissecting Copy/Delete/Replace/Swap mutations: Insights from a
GIN Case Study

Sherlock A. Licorish Markus Wagner*

University of Otago The University of Adelaide
Dunedin, New Zealand Adelaide, Australia
sherlock.licorish@otago.ac.nz markus.wagner(@adelaide.edu.au

: 4%
HAON

Repo: https://github.com/markuswagnergithub/combining_sa_and_qi ,7

https://github.com/markuswagnergithub/combining_sa_and_gi

Situation

reddit

stackoverflow

2018 25th Australasian Software Engineering Conference (ASWEC)

Quor a Code Reuse in Stack Overflow and Popular Open Source Java

Projects
Adriaan Lotter Sherlock A. Licorish Df““;;‘;‘;}i};;t‘tz%‘;‘gce
Department of Information Science Department of Information Science e University of Ot
University of Otago University of Otago Duggiffke:{ Zeglgafl d
o S u p e r u S e r Dunedin, New Zealand Dunedin, New Zealand st e o
adriaan lotter@otago.ac.nz sherlock licorish@otago.ac.nz 8 @otago.
Sarah Meldrum
Department of Information Science
University of Otago
Dunedin, New Zealand

sarah-meldrum@outlook.com

Abstract— Solutions provided in Question and Answer (Q&A) maintainability. While code reuse allows for previously
websnes such as Stack Overflow are regularly used in Open tested and quality-assured code to be implemented in a

..... L LA L 3 2 L D T B 2

Challenge

Snippets online can often be incorrect, insecure, and
incomplete

We have observed errors in Stack Overflow code

These observations extend to students’ work, across
multiple universities

Errors have also been reported by open source
developers, proprietary developers, and end users...
the software development community

2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)

Impact of stack overflow code snippets on software
cohesion: a preliminary study

Mashal Ahmad
Lero, School of Computer Science
University College Dublin
Dublin, Ireland.
mashal.ahmad @ucdconnect.ie

Abstract—Developers frequently copy code snippets from
publicly-available resources such as Stack Overflow (SO). While
this may lead to a ‘quick fix’ for a development problem, little

Mel O Cinnéide
Lero, School of Computer Science
University College Dublin
Dublin, Ireland
mel.ocinneide @ucd.ie

to measure the code quality, we used the class cohesion metrics
L.SCCC and CC. Our study involves a sample of 378 GitHub
roen ssiith ands . orenion iE v eenwflonans

(O alas 1o omimmato acmind feame Claal O

"App explanation: the sprit of
stack overflow is coders
helping coders”

- NissanConnect EV mobile a;o;o3

Phase 1

Combining GIN and PMD for Code Improvements

https://arxiv.org/abs/2202.01490

https://arxiv.org/abs/2202.01490

Static Analysis Identifies Flaws

Science of Computer Programming 199 (2020) 102516

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.comv/locate/scico

Understanding stack overflow code quality:)
A recommendation of caution e

Sarah Meldrum, Sherlock A. Licorish *, Caitlin A. Owen,
Bastin Tony Roy Savarimuthu

Department of Information Science, University of Otago, Dunedin, New Zealand

ARTICLE INFO ABSTRACT
Am’c(e history: Community Question and Answer (CQA) platforms use the power of online groups to
Received 10 January 2020 solve problems, or gain information. While these websites host useful information, it is

try {

~ public class €201156{
~ public static void receiveMessage() {

if ((socket == null) socket.isClosed()) {

socket new DatagramsSocket (BROADCAST_PORT);
socket. setSoTimeout (5000);

idMsgs.clear();

while ((socket '= null) && !socket.isClosed()) {
socket. setReuseAddress(true);
socket. setsoTimeout (10000);

try {
final byte[] receivesBuffer = new byte[sizepck];
final patagramPacket packet = new DatagramPacket(
receivesuffer, receivesuffer.length);
socket.receive(packet);

} catch (final SsocketTimeoutexception e) {

} catch (final Throwable e) {

¥

Question: Can genetic improvement improve the health of snippets?

Phase I - Empirical Approach

* Snippets (8,010) extracted from Stack Overflow for 2014, 2015, and 2016 using Stack
Overflow’s data explorer

* Answer posts which contained at least one “<code>" tag and were from a question tagged
from Java were then sampled

* Static checker PMD used to identify faults, https://pmd.github.io/

* Genetic improvement tool GIN used for code repair, https://github.com/gintool/gin

* We focus on performance related faults in Stack Overflow’s code

https://pmd.github.io/
https://github.com/gintool/gin

Characterizing PMD’s Treatment of 8,010 Snippets

* PMD finds 30,668 rule violations in 3,034 snippets, covering 135 of its 324 rules:

total number different rules

PMD ruleset of violations violated (total)
Code Style CS 16832 31 (64)
Documentation DOC 6292 3 (5)
Best Practice BP 3557 23 (57)
Design DES 2785 26 (48)
Error Prone EP 778 31 (103)
Performance PER 396 17 (32)
Multi-Threading MT 28 4 (11)
Security SEC 0 04

* Examples of performance related rule violations:

rule count description

UseStringBufferForString Appends 118 Prefer StringBuilder (non-synchronized) or StringBuffer (synchronized) over +=

AddEmptyString 54 Do not add empty strings.

AppendCharacterWithChar 35 Avoid appending characters as strings in StringBuffer.append.
RedundantFieldInitializer 23 Avoid using redundant field initializer for <i>.
AvoidInstantiatingObjectsInLoops 19 Avoid instantiating new objects inside loops.
AvoidArrayLoops 19 System.arraycopy is more efficient.

UselndexOfChar 12 String.indexOf{(char) is faster than String.indexOf(String).

StringInstantiation 11 Avoid instantiating String objects; this is usually unnecessary.

Characterizing GIN’s Single-edit Space

* GIN’s RandomSampler samples and runs 17,986 unique single-edit patches (DeleteLine,
ReplaceLine, CopyLine, and SwapLine; and DeleteStatement, ReplaceStatement,
CopyStatement, and SwapStatement; in total 31.4% compile)

770 patches: files no longer have any performance issues — according to PMD

* 58 (for 44 unique files) patches produce compilable code without performance issues

= 36 al'e Delete CditS that delete the Offendlng COde : pUbI::blcilcas:taCffczosst{ring expand(String word) {
- most others either replace or modify the offending code

int stringlength = word.length();

StringBuffer buffer = new StringBuffer();

for (int i = @; i < stringlength - 1; i++) {
buffer.append(word.substring(i, i + 1));
buffer.append("-");

Example: Code snippet C66208 with error AppendCharacterWithChar,)

O 00 N N U W

mutation DeleteStatement (64). The deleted statement is shown in red. buFfer, appendtword. substrinslstrimlongth ~ 1
For more examples, see the GIWGECCO paper “Dissecting stringlength)); ’
Copy/Delete/Replace/Swap mutations: Insights from a GIN Case Study”. 10 return buffer.toString();

11 }
12 }

* Non-uniform effects of edits types
- Copy edits attract disproportionally many violations
- Delete edits perform best against the AvoidInstantiatingObjectsInLoops violations

Future Work/Threats

* Better static analysis:

- Mitigate false positive and trivial warnings
- Improve parsing of non-compilable code

- Crowd-source rules

* Better automated program improvement:

- Bias sampling towards desired effects

- Better code transformations
- Other non-functional properties

Threat: GIN is normally accompanied by
unit test suites to assess the validity
of mutants. This work does not adopt
such tests, and thus our successful
patches that cleared performance issues
and resulted in compilable code could
have been inflated.

Dissecting Copy/Delete/Replace/Swap mutations: Insights from a
GIN Case Study

Sherlock A. Licorish

Department of Information Sciences, University of Otago

Dunedin, New Zealand
sherlock licorish@otago.ac.nz

ABSTRACT

Research studies are increasingly critical of publicly available code
due to evidence of faults. This has led researchers to explore ways
to improve such code, with static analysis and genetic code im-
provement previously singled out. Previous work has evalnated
the feasibility of these techniques, using PMD (a static analysis
tool) and GIN (a program repair tool) for enhancing Stack Overflow
Java code snippets. Results reported in this regard pointed to the
potential of these techniques. especially in terms of GIN’s removal

Markus Wagner
School of Computer Science, The University of Adelaide
Adelaide, Australia
markus.wagner@adelaide.edu.au

1 INTRODUCTION/MOTIVATION

On the premise that code-hosting websites such as Stack Overflow!
and HackerRank? have become the cornerstone for software devel-
opers seeking solutions to their coding challenges [6], and because
such code can at times possess faults [2, 3, 7], there have been ef-
forts aimed at automating code improvement on such portals 5, 9].
In particular, Licorish and Wagner (5] use the PMD static analysis
tool to detect performance faults for a sample of Stack Overflow
Tava code snippets. before performing mutations on tl:;ese snippets

Phase 11

Dissecting Copy/Delete/Replace/Swap mutations:
Insights from a GIN Case Study

https://cs.adelaide.edu.au/~markus/pub/2022gi-cdrw.pdf

10

https://cs.adelaide.edu.au/~markus/pub/2022gi-cdrw.pdf

Effectiveness of GIN’s Mutations

1 public class C264051{ 1 public class C83902{

2 public static int gcd(int a, int b) { 2 public int[] getSubArray(int[] array, int index, int

3 if (b =10) { size) {

4 return a; 3 int[] subArray = new int[size];

5 } else { 4 int subArrayIndex = 0;

6 return gcd(b, a ¥ b); 5 for (int i = index; i < index + size; i++) {

7 } 6 subArray[subArrayIndex] = array[il;

8} 7 subArrayIndex++;

9 8 subArray[subArrayIndex] = array[il;

10 public static int pairwisePrimes(int k) { 9 3}

11 int numWays = 0; 10 return subArray;

12 for (int a = 1; a < k; a++) { 1 }

13 for (int b=a + 1; b < k; b++) { 12 }

14 for (int c=b + 1; c < k; c+¥) {

15 if ((@a +b + c= k) & gcd(a, b) = 1 && gcd(a, Llslmg 7: Code snippet C83902 with error AvoidArrayLoops,
c) =1 & gad(b, ©) = 1) { mutation ReplaceLine(6,7). The removed code is shown in

16 System.out.println("™ + a + "+' + b + "+" + ¢); red and the introduced code is shown in blue.

17 numWays++;

18 }

L ¥ // original

& ¥ 1 public class C330977{

2} public void printStrings(String a, int b) {

2 retumn nuniays; String printString = "";

31 for (int i = @; i<b; i++) {

24}

printString = printString+" "+a;

}

Listing 4: Code snippet C264051 with error AddEmptyString,
System.out.println(printString);

mutation DeleteLine(16). The deleted line is shown in red.

00 ~] O U1 = WD

Question: How effective are mutations performed by GIN?

11

Phase II - Empirical Approach

* The 58 single-edit mutations (of 44 different snippets) that no longer show any performance
issues and the code 1s compilable

* One 1ssue is removed in 54 cases, and two 1ssues are removed in four cases

 We manually annotate the 58 mutations with a focus on whether or not a human would deem
the mutation acceptable, by:

(1) Describing the change to the semantics of the program
(2) Answering the question: “Are the semantics retained? Possible answers: yes/mostly/no”

* We performed two rounds of analyses to ensure consistency in the manual analysis performed
by the two authors

12

GIN’s Repair Observations

* PMD performance-related errors in the original 44 code snippets

rule count description

UseStringBufferForStringAppends 26 Prefer StringBuilder (non-synchronized) or StringBuffer (synchronized) over += for concatenating strings.
AvoidArrayLoops 15 System.arraycopy is more efficient.

AddEmptyString 6 Do not add empty strings.

AppendCharacterWithChar 5 Avoid appending characters as strings in StringBuffer.append.

InefficientStringBuffering 3 Avoid concatenating nonliterals in a StringBufter/StringBuilder constructor or append().
InefficientEmptyString Check 2 String.trim().length() == 0 / String.trim().isEmpty() is an inefficient way to validate a blank String.
TooFewBranchesForASwitchStatement 2 A switch with less than three branches is inefficient, use an if statement instead.
AvoidInstantiatingObjectsInLoops 2 Avoid instantiating new objects inside loops.

ConsecutiveLiteral Appends 1 StringBuffer (or StringBuilder).append is called <3> consecutive times with literals.

* Repair observations
* 36 of the 58 mutations are the result of DeleteStatement and DeleteLine operations

* code semantics are retained in only two cases, most of the semantics are retained in six cases, and the
semantics undergo a major change in the remaining 50 cases

* almost all fixing mutations remove the offending code (thereby changing the semantics)

* PMD should still be reporting the performance-related issue AvoidArrayLoops in two cases

13

Implications/Threats

e It appears like DeleteStatement and DeletelLine mutations result in fewer syntactic code
anomalies than the other operations

* GIN’s fixes tend to come at the expense of changes in code semantics, thus necessitating
deeper contextual probing of repair outcomes

* Removing offending code can be an effective program repair strategy

* PMD parsing seems at times to be confused by GIN’s mutations, pointing to the need to
improve the AST pipeline

» False negatives may be as detrimental as false positive in invalidating static analysis

techniques |
Threat: Under normal operation, GIN may

strive for code correctness by repeated patch
generation given the outcomes of test cases,

which was replaced by our manual analysis. iy

Dissecting Copy/Delete/Replace/Swap mutations: Insights from a
GIN Case Study

Sherlock A. Licorish Markus Wagner*
University of Otago The University of Adelaide
Dunedin, New Zealand Adelaide, Australia

sherlock.licorish@otago.ac.nz markus.wagner(@adelaide.edu.au

