
1

 Dissecting Copy/Delete/Replace/Swap mutations: Insights from a
GIN Case Study

Markus Wagner*
The University of Adelaide
Adelaide, Australia
markus.wagner@adelaide.edu.au

Sherlock A. Licorish
University of Otago
Dunedin, New Zealand
sherlock.licorish@otago.ac.nz

Repo: https://github.com/markuswagnergithub/combining_sa_and_gi

https://github.com/markuswagnergithub/combining_sa_and_gi

Situation

2

3

Challenge
• Snippets online can often be incorrect, insecure, and

incomplete

• We have observed errors in Stack Overflow code

• These observations extend to students’ work, across
multiple universities

• Errors have also been reported by open source
developers, proprietary developers, and end users…
the software development community

“App explanation: the sprit of
stack overflow is coders

helping coders”
- NissanConnect EV mobile app

4

 Phase I

Combining GIN and PMD for Code Improvements

https://arxiv.org/abs/2202.01490

https://arxiv.org/abs/2202.01490

Question: Can genetic improvement improve the health of snippets?

5

Static Analysis Identifies Flaws

• Snippets (8,010) extracted from Stack Overflow for 2014, 2015, and 2016 using Stack
Overflow’s data explorer

• Answer posts which contained at least one “<code>” tag and were from a question tagged
from Java were then sampled

• Static checker PMD used to identify faults, https://pmd.github.io/

• Genetic improvement tool GIN used for code repair, https://github.com/gintool/gin

• We focus on performance related faults in Stack Overflow’s code

6

Phase I - Empirical Approach

https://pmd.github.io/
https://github.com/gintool/gin

• PMD finds 30,668 rule violations in 3,034 snippets, covering 135 of its 324 rules:

• Examples of performance related rule violations:

7

Characterizing PMD’s Treatment of 8,010 Snippets

• GIN’s RandomSampler samples and runs 17,986 unique single-edit patches (DeleteLine,
ReplaceLine, CopyLine, and SwapLine; and DeleteStatement, ReplaceStatement,
CopyStatement, and SwapStatement; in total 31.4% compile)

• 770 patches: files no longer have any performance issues – according to PMD

• 58 (for 44 unique files) patches produce compilable code without performance issues
- 36 are Delete edits that delete the offending code
- most others either replace or modify the offending code

• Non-uniform effects of edits types
- Copy edits attract disproportionally many violations
- Delete edits perform best against the AvoidInstantiatingObjectsInLoops violations 8

Characterizing GIN’s Single-edit Space

Example: Code snippet C66208 with error AppendCharacterWithChar,
mutation DeleteStatement(64). The deleted statement is shown in red.
For more examples, see the GI@GECCO paper “Dissecting
Copy/Delete/Replace/Swap mutations: Insights from a GIN Case Study”.

• Better static analysis:
- Mitigate false positive and trivial warnings
- Improve parsing of non-compilable code
- Crowd-source rules

• Better automated program improvement:
- Bias sampling towards desired effects
- Better code transformations
- Other non-functional properties

9

Future Work/Threats

Threat: GIN is normally accompanied by
unit test suites to assess the validity
of mutants. This work does not adopt
such tests, and thus our successful
patches that cleared performance issues
and resulted in compilable code could
have been inflated.

10

 Phase II

Dissecting Copy/Delete/Replace/Swap mutations:
Insights from a GIN Case Study

https://cs.adelaide.edu.au/~markus/pub/2022gi-cdrw.pdf

https://cs.adelaide.edu.au/~markus/pub/2022gi-cdrw.pdf

Question: How effective are mutations performed by GIN?

11

Effectiveness of GIN’s Mutations

• The 58 single-edit mutations (of 44 different snippets) that no longer show any performance
issues and the code is compilable

• One issue is removed in 54 cases, and two issues are removed in four cases

• We manually annotate the 58 mutations with a focus on whether or not a human would deem
the mutation acceptable, by:

(1) Describing the change to the semantics of the program
(2) Answering the question: “Are the semantics retained? Possible answers: yes/mostly/no”

• We performed two rounds of analyses to ensure consistency in the manual analysis performed
by the two authors

12

Phase II - Empirical Approach

• PMD performance-related errors in the original 44 code snippets

• Repair observations
• 36 of the 58 mutations are the result of DeleteStatement and DeleteLine operations
• code semantics are retained in only two cases, most of the semantics are retained in six cases, and the

semantics undergo a major change in the remaining 50 cases
• almost all fixing mutations remove the offending code (thereby changing the semantics)
• PMD should still be reporting the performance-related issue AvoidArrayLoops in two cases

13

GIN’s Repair Observations

• It appears like DeleteStatement and DeleteLine mutations result in fewer syntactic code
anomalies than the other operations

• GIN’s fixes tend to come at the expense of changes in code semantics, thus necessitating
deeper contextual probing of repair outcomes

• Removing offending code can be an effective program repair strategy

• PMD parsing seems at times to be confused by GIN’s mutations, pointing to the need to
improve the AST pipeline

• False negatives may be as detrimental as false positive in invalidating static analysis
techniques

14

Implications/Threats

Threat: Under normal operation, GIN may
strive for code correctness by repeated patch
generation given the outcomes of test cases,
which was replaced by our manual analysis.

15

 Dissecting Copy/Delete/Replace/Swap mutations: Insights from a
GIN Case Study

Markus Wagner*
The University of Adelaide
Adelaide, Australia
markus.wagner@adelaide.edu.au

Sherlock A. Licorish
University of Otago
Dunedin, New Zealand
sherlock.licorish@otago.ac.nz

