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Key Points

● Using genetic improvement to find optimized LLVM Pass sequences

● Automatic way to find a problem-specific optimization sequence

○ Without expert domain knowledge

● 3.7% runtime improvement (good in compiler world)
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I. The Shackleton Framework



Osaka List Structure

Generalized linear representation of objects that unifies:

● Initialization

● Selection

● Crossover

● Mutation

● Customized fitness



II. LLVM Optimization Passes

•New target application, mostly unrelated to GA

•Variety of possible injection points for GA

• Common Optimizer

• Transitions from frontend to middle, middle to backend

•Open source

• Easily accessible, popular



A bit more about LLVM - default optimization levels

-O0: compiles the fastest and generates the most debuggable code

-O1: in between -O0 and -O2

-O2: moderate level of optimization which enables most optimizations

-O3: -O2 plus optimizations that take longer to perform or that may generate 
larger code (in an attempt to make the program run faster)

-O4: adds link-time optimization

-Os: -O2 with extra optimizations to reduce code size

-Oz: -Os (and thus -O2) but reduces code size further
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III. Genetic “Edit” Rules

1. Deletion
2. Insertion
3. Replacement

“Edit” Representations in Osaka List Structure

Edit ↔ Gene

Inside an “Edit”:
1. Edit type
2. Position
3. New Pass (null for deletion)



Example Walk-through



Experimental Outline

a. Target program: Backtracker Algorithm for the Subset Sum Problem (SSP)

b. Hyperparameters:

c. 8 repeated runs

num_generations 50

population_size 40

percent_crossover 60

percent_mutation 80

percent_elite 10

tournament_size 4

nest_size 6

individual_size 0 (this means random length)



Results

Runtime Improvement: 3.7% ( ±0.8768)

Hoste, Kenneth and Eeckhout, Lieven (2008): 3.1%
Ashouri, Amir Hossein et. al. (2016): 4%, 2%
Ashouri, Amir Hossein et. al. (2017): 5%
Wang, Zheng and O’Boyle, Michael (2018): 5%



Efficiency Analysis

Entire search space: 10^167  → would take decades!

Genetic Improvement: start from known solution (-O3) → a few hours



Conclusions

● Don’t need domain expertise
● Problem-specific
● Efficient search process
● 3.7% runtime improvement

● Hyperparameter tuning specific for GI
● More test cases & standard benchmarks

Future Directions



thanks for listening!
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