
Genetic Improvement in the
Shackleton Framework for
Optimizing LLVM Pass Sequences

Stella Li, Hannah Peeler, Andrew Sloss, Kenneth Reid,
Wolfgang Banzhaf

https://arxiv.org/abs/2204.13261

Michigan State University, Johns Hopkins University, Arm Ltd.
Genetic Improvement Workshop | GECCO

https://arxiv.org/abs/2204.13261

Key Points

● Using genetic improvement to find optimized LLVM Pass sequences

● Automatic way to find a problem-specific optimization sequence

○ Without expert domain knowledge

● 3.7% runtime improvement (good in compiler world)

Overview

I. Shackleton Framework

II. Target Application: LLVM

A. Experiments & Results

III. Edit Representations

IV. Experiments & Results

V. Conclusion

I. The Shackleton Framework

Osaka List Structure

Generalized linear representation of objects that unifies:

● Initialization

● Selection

● Crossover

● Mutation

● Customized fitness

II. LLVM Optimization Passes

•New target application, mostly unrelated to GA

•Variety of possible injection points for GA

• Common Optimizer

• Transitions from frontend to middle, middle to backend

•Open source

• Easily accessible, popular

A bit more about LLVM - default optimization levels

-O0: compiles the fastest and generates the most debuggable code

-O1: in between -O0 and -O2

-O2: moderate level of optimization which enables most optimizations

-O3: -O2 plus optimizations that take longer to perform or that may generate
larger code (in an attempt to make the program run faster)

-O4: adds link-time optimization

-Os: -O2 with extra optimizations to reduce code size

-Oz: -Os (and thus -O2) but reduces code size further

A bit more about LLVM - default optimization levels

-O0: compiles the fastest and generates the most debuggable code

-O1: in between -O0 and -O2

-O2: moderate level of optimization which enables most optimizations

-O3: -O2 plus optimizations that take longer to perform or that may generate
larger code (in an attempt to make the program run faster)

-O4: adds link-time optimization

-Os: -O2 with extra optimizations to reduce code size

-Oz: -Os (and thus -O2) but reduces code size further

III. Genetic “Edit” Rules

1. Deletion
2. Insertion
3. Replacement

“Edit” Representations in Osaka List Structure

Edit ↔ Gene

Inside an “Edit”:
1. Edit type
2. Position
3. New Pass (null for deletion)

Example Walk-through

Experimental Outline

a. Target program: Backtracker Algorithm for the Subset Sum Problem (SSP)

b. Hyperparameters:

c. 8 repeated runs

num_generations 50

population_size 40

percent_crossover 60

percent_mutation 80

percent_elite 10

tournament_size 4

nest_size 6

individual_size 0 (this means random length)

Results

Runtime Improvement: 3.7% (±0.8768)

Hoste, Kenneth and Eeckhout, Lieven (2008): 3.1%
Ashouri, Amir Hossein et. al. (2016): 4%, 2%
Ashouri, Amir Hossein et. al. (2017): 5%
Wang, Zheng and O’Boyle, Michael (2018): 5%

Efficiency Analysis

Entire search space: 10^167 → would take decades!

Genetic Improvement: start from known solution (-O3) → a few hours

Conclusions

● Don’t need domain expertise
● Problem-specific
● Efficient search process
● 3.7% runtime improvement

● Hyperparameter tuning specific for GI
● More test cases & standard benchmarks

Future Directions

thanks for listening!

Contact info:

Stella Li: sli136@jhu.edu
Hannah Peeler: hpeeler@utexas.edu
Andrew Sloss: andrew@sloss.net
Kenneth Reid: ken@kenreid.co.uk
Wolfgang Banzhaf: banzhafw@msu.edu

mailto:sli136@jhu.edu
mailto:hpeeler@utexas.edu
mailto:andrew@sloss.net
mailto:ken@kenreid.co.uk
mailto:banzhafw@msu.edu

