
Oliver Krauss MSc

Amaru - A Framework for Combining
Genetic Improvement with Pattern
Mining (amaru.dev)

Boston / Online 9. July 2022

GI@GECCO 2022



What is a pattern?

fn
sum()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int sum

0

return

read
int sum

write
int sum


+

read
int
sum

read
int

arr[]

read
int i

Abstract Syntax Tree (AST)

Slide 1 / 19



What is a pattern?
Many Abstract Syntax Trees (ASTs)

fn
sum()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int sum

0

return

read
int sum

write
int sum


+

read
int
sum

read
int

arr[]

read
int i

fn
min()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int min

INT.MAX

return

read
int min

if

>

read
int
min

read
int

arr[]

read
int i

write
int min


read
int

arr[]

read
int i

fn
max()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int max

INT.MIN

return

read
int max

if

<

read
int
max

read
int

arr[]

read
int i

write
int max


read
int

arr[]

read
int i

fn
avg()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int avg

0

return

read
int avg

write
int avg


+

read
int
avg

read
int

arr[]

read
int i

read
int len

/

Slide 1 / 19



What is a pattern?
fn

sum()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int sum

0

return

read
int sum

write
int sum


+

read
int
sum

read
int

arr[]

read
int i

fn
min()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int min

INT.MAX

return

read
int min

if

>

read
int
min

read
int

arr[]

read
int i

write
int min


read
int

arr[]

read
int i

fn
max()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int max

INT.MIN

return

read
int max

if

<

read
int
max

read
int

arr[]

read
int i

write
int max


read
int

arr[]

read
int i

fn
avg()

{}
write
int
arr[]

read
arg 0

for

write
int i

0

<

read
int i

read
int len

write
int len

read
arg 1

{}
write
int i

+

read
int i

1

write
int avg

0

return

read
int avg

write
int avg


+

read
int
avg

read
int

arr[]

read
int i

read
int len

/

for

write
int i

0

<

read
int i

read
int len

write
int i

+

read
int i

1

Many Abstract Syntax Trees (ASTs)

Frequent Pattern

Slide 1 / 19



Why Mine Patterns?

– Software engineering is challenging

– More challenging when needing to optimize for Non-Functional
Properties (NFP)

– Example: 75% of Software Maintenance costs improve performance
or fix bugs [1]

– Goal: Find patterns, validate patterns, use patterns

Slide 2 / 19

[1] Jussi Koskinen - Software Maintenance Costs - 2015



Why Mine Patterns?

– Software engineering is challenging
– More challenging when needing to optimize for Non-Functional

Properties (NFP)

– Example: 75% of Software Maintenance costs improve performance
or fix bugs [1]

– Goal: Find patterns, validate patterns, use patterns

Slide 2 / 19

[1] Jussi Koskinen - Software Maintenance Costs - 2015



Why Mine Patterns?

– Software engineering is challenging
– More challenging when needing to optimize for Non-Functional

Properties (NFP)
– Example: 75% of Software Maintenance costs improve performance

or fix bugs [1]

– Goal: Find patterns, validate patterns, use patterns

Slide 2 / 19

[1] Jussi Koskinen - Software Maintenance Costs - 2015



Why Mine Patterns?

– Software engineering is challenging
– More challenging when needing to optimize for Non-Functional

Properties (NFP)
– Example: 75% of Software Maintenance costs improve performance

or fix bugs [1]

– Goal: Find patterns, validate patterns, use patterns

Slide 2 / 19

[1] Jussi Koskinen - Software Maintenance Costs - 2015



Introduction I

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern
Mining

representation,
language access


Genetic
Improvement

Truffle

Slide 3 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Slide 4 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Run directly in
compiler



+ Stack/heap

access
+ Granularity

+ Information on
language



- Granularity

- Work needed for
GI operators


Slide 4 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Run directly in
compiler



+ Stack/heap

access
+ Granularity

+ Information on
language



- Granularity

- Work needed for
GI operators


Algorithms that
learn




+ Learn about

language
+ Apply knowledge

in GI
+ Apply patterns




- Performance of

GI operators






Slide 4 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Run directly in
compiler



+ Stack/heap

access
+ Granularity

+ Information on
language



- Granularity

- Work needed for
GI operators


Algorithms that
learn




+ Learn about

language
+ Apply knowledge

in GI
+ Apply patterns




- Performance of

GI operators




 Knowledge base




+ Store experiment
data for analysis

+ Reproducible
experiments
+ Publish

experiment data


Slide 4 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Run directly in
compiler



+ Stack/heap

access
+ Granularity

+ Information on
language



- Granularity

- Work needed for
GI operators


Extensible
algorithms




+ Connect to other

frameworks
+ Parallel /
distributed
execution


Algorithms that
learn




+ Learn about

language
+ Apply knowledge

in GI
+ Apply patterns




- Performance of

GI operators




 Knowledge base




+ Store experiment
data for analysis

+ Reproducible
experiments
+ Publish

experiment data


Slide 4 / 19



The Amaru Framework

Pattern Framework & API

Execution Environment


Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language 

Information (TLI)















analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &

AST

Experiment








Test Cases

Optimal AST Original AST


Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization

Mechanism

uses

produces

Optimizer


Connector to 

other Frameworks

Experiment Results


Tested AST

Runtime ProfileTest Results

Optimization 

Algorithms

Key:                                                                                           

      

Execution
Relation

Data
Relation

Logical

Group

Used

Framework

Language

Specific

Program

Specific

Data Optional

Data

Knowledge Base
























Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)







collects &

injects 


transformed ASTs

uses

Truffle Pattern Injector
(TPI)









 hierarchyPattern Detection

Algorithms

Pattern Application
Algorithms

collected AST
transformed

AST

Run directly in
compiler



+ Stack/heap

access
+ Granularity

+ Information on
language



- Granularity

- Work needed for
GI operators


Extensible
algorithms




+ Connect to other

frameworks
+ Parallel /
distributed
execution


Algorithms that
learn




+ Learn about

language
+ Apply knowledge

in GI
+ Apply patterns




- Performance of

GI operators




 Knowledge base




+ Store experiment
data for analysis

+ Reproducible
experiments
+ Publish

experiment data


Pattern mining




+ Identify patterns
+ Validate patterns

Slide 4 / 19



Knowledge-guided Genetic
Improvement

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern
Mining

representation,
language access


Genetic
Improvement

Knowledge-
guided Genetic
Improvement

(KGGI)

Truffle

Slide 5 / 19



Knowledge-guided Genetic
Improvement

– Grammar-guided Genetic Programming
– Tree Genetic Programming
– Enriched with metadata

– loops, branches, NFP, ...
– Operators access context

– stack, heap, functions, ...
– Applies patterns and requirements

via Syntax Graph

Slide 6 / 19

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern
Mining

representation,
language access


Genetic
Improvement

Knowledge-
guided Genetic
Improvement

(KGGI)

Truffle



Knowledge-guided Genetic
Improvement

for

...

write
i


MUTATE {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax Graph
write
len


10

Slide 7 / 19



Knowledge-guided Genetic
Improvement

for

...

write
i


MUTATE {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax Graph
write
len


10

Constraints

depth: 3

branches: 1

approx. perf:
100ns

Slide 7 / 19



Knowledge-guided Genetic
Improvement

for

...

write
i


MUTATE {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax GraphGrammar

write
len


10

Constraints

Slide 7 / 19



Knowledge-guided Genetic
Improvement

for

...

< {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax GraphGrammar

write
len


10

for

write
i
 ★

Patterns

read
i


Constraints

MUTATE

write
i


0

write
i


Slide 7 / 19



Knowledge-guided Genetic
Improvement

for

...

< {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax GraphGrammar

write
len


10

Patterns

Constraints

read
i


write
i


MUTATE

Context

Slide 7 / 19



Knowledge-guided Genetic
Improvement

for

...

< {}

...0

Entry
Strategy


Root
Strategy


< >
read
int


if ...

AST

Syntax GraphGrammar

write
len


10

Patterns

Constraints

read
i


write
i


read
len


Context

Slide 7 / 19



Independent Growth of Ordered
Relationships

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern Mining

Independent
Growth of
Ordered

Relationships

(IGOR)


representation,
language access


Genetic
Improvement

Truffle

Slide 8 / 19



Independent Growth of Ordered
Relationships

– Mining of frequently recurring substructures
– Significant if occuring with a minimum support
– Discriminative pattern mining

– Often used for software fault mining
– Mining in two groups - succeeding and failing
– Discriminative pattern occurs more

often in one group

Slide 9 / 19

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern Mining

Independent
Growth of
Ordered

Relationships

(IGOR)


representation,
language access


Genetic
Improvement

Truffle



Independent Growth of Ordered
Relationships

ASTs from GI experiments

Fast ASTs
ASTs with
Exception
"Timeout"


IGOR
Metrics:

50% significant
75% discriminative

Slow ASTs

Top n patterns

Block

★

DTArrayRead

slow

fast

timeout

0 100

200

300

400

500

InvokeVoid

Read

slow

fast

timeout

0 10 20 30 40 50 60 70

slow

fast

timeout

0 20 40 60 80 100
120
140

DTAnd

★

Read

amount of occurence
amount of trees

Slide 10 / 19



Example: Bug Pattern
Uninitialized Variables

★

¬write
0


read

0


Fault of omission:
variable read before assignment


Slide 11 / 19



Example: Bug Pattern
Uninitialized Variables

★

¬write
0


read

0


Fault of omission:
variable read before assignment


Taxonomies

read

read
stack


read
heap


read
stack
int


read
stack
str


...

Generalized





















Specialized


Slide 11 / 19



Example: Bug Pattern
Uninitialized Variables

★

¬write
0


read

0


Fault of omission:
variable read before assignment


Wildcards

★ Embedded

¬ Missing

Taxonomies

Slide 11 / 19



Example: Bug Pattern
Uninitialized Variables

★

¬write
0


read

0


Fault of omission:
variable read before assignment


Wildcards

Ordered Patterns

Write missing before read


Taxonomies

Slide 11 / 19



Example: Bug Pattern
Uninitialized Variables

★

¬write
0


read

0


Fault of omission:
variable read before assignment


Wildcards

Ordered Patterns

Write and read to same var 0

Variables Considered

Taxonomies

Slide 11 / 19



Validating patterns

– Using KGGI Syntax Graph
– Create Mutants of n ASTs
– Validate confidence in hypothesis

– x% have a speedup due to pattern
– x% fail due to exception

– Side effects prevent 100% confidence

Slide 12 / 19



Pattern Validation - Bug

★

¬write

0

read

0

★

write

0

read

0

(cause 82.7% confidence)

(fix 94.27% confidence)

82.7%

9.38%

7.29%
0.417%

0.208%

74%

8.8%

5.73%3.07%

2.8%

2.67%

2%

0.933%

Successful

Process crash with log

Illegal State

Class Cast

Exception not serializable

Unsupported Specialization

Array Index Out Of Bounds

Timeout

Illegal State

Successful

Null Pointer

Process crash with log

Array Index Out Of Bounds

Slide 13 / 19



Using Patterns in GI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100
all tests succeed

tests fail

runtime exception

Generations

U
ni

qu
e 

A
S

Ts
 in

 g
en

er
at

io
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100 all tests succeed

tests fail

runtime exception

Generations

U
ni

qu
e 

A
S

Ts
 in

 g
en

er
at

io
n

Figure: Top: population in GI without patterns; bottom: with patterns
Slide 14 / 19



Improvement of Run-time
Performance

Rectified Linear Activation

Leaky Rectified Linear Activation

Sigmoid

Swish
Tanh

Fully Inlined NN

All Activation Functions

0

0.5M

1M

1.5M

2M
baseline

patterns

R
un

 ti
m

e 
(n

s)

Slide 15 / 19



Application of patterns in GI

GI population

– Amount of ASTs overall doubled
– Amount of successful ASTs doubled
– Only 32.7% of ASTs with exceptions (down from 60.3%)

Run-time performance

– 22 / 25 ASTs improved
– Average of 33.5% faster

Slide 16 / 19



Summary

Benefits

– GI at the compiler level
– Identify and explain patterns
– Apply patterns in GI
– Improves population quality and diversity

Drawbacks

– Large search spaces
– Mutation and Crossover costly
– Run-time performance measurement costs

Slide 17 / 19



Outlook

– Improve Amaru
– Ease of use
– Additional algorithms
– Automation of pattern mining

– Additional Connectors

– More Truffle languages
– Additional compilers

– Answer your questions

Slide 18 / 19



Outlook

– Improve Amaru
– Ease of use
– Additional algorithms
– Automation of pattern mining

– Additional Connectors
– More Truffle languages
– Additional compilers

– Answer your questions

Slide 18 / 19



Outlook

– Improve Amaru
– Ease of use
– Additional algorithms
– Automation of pattern mining

– Additional Connectors
– More Truffle languages
– Additional compilers

– Answer your questions

Slide 18 / 19



Contact

Code available under the MIT License at https://amaru.dev

Oliver Krauss
oliver.krauss@fh-
hagenberg.at

+43 (0)50804-27195

Slide 19 / 19

https://amaru.dev


Bibliography I

[1] Jussi Koskinen, Software Maintenance Costs, [Online; accessed 13. Apr.
2022], Apr. 2022. [Online]. Available:
https://wiki.uef.fi/display/tktWiki/Jussi+Koskinen?preview=
/38669960/38634345/SMCOSTS.pdf.

Slide 1 / 4

https://wiki.uef.fi/display/tktWiki/Jussi+Koskinen?preview=/38669960/38634345/SMCOSTS.pdf
https://wiki.uef.fi/display/tktWiki/Jussi+Koskinen?preview=/38669960/38634345/SMCOSTS.pdf


Measuring Runtime Performance
– Semantic validity → test based + coverage metrics

– Accurate measures for NFP → 200,000 runs per AST in own JVM
– Takes time

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 1

2M

3M

4M

5M

6M

Performance over executions

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

18k17.8k 17.9k 18.1k 18.2k

2M

3M

2.5M

3.5M

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

Slide 2 / 4



Measuring Runtime Performance
– Semantic validity → test based + coverage metrics
– Accurate measures for NFP → 200,000 runs per AST in own JVM

– Takes time

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 1

2M

3M

4M

5M

6M

Performance over executions

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

18k17.8k 17.9k 18.1k 18.2k

2M

3M

2.5M

3.5M

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

Slide 2 / 4



Measuring Runtime Performance
– Semantic validity → test based + coverage metrics
– Accurate measures for NFP → 200,000 runs per AST in own JVM
– Takes time

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 1

2M

3M

4M

5M

6M

Performance over executions

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

18k17.8k 17.9k 18.1k 18.2k

2M

3M

2.5M

3.5M

Execution (repetition)

R
un

 t
im

e 
pe

r 
ex

ec
ut

io
n 

(n
s)

Slide 2 / 4



Generalizable Optimizations

★

write
TYPE

0


write
¬TYPE


0


– Switch of variable type
– Affects example language

MiniC
– Possibly generalizable

Slide 3 / 4



Generalizable Optimizations

– Other performance (anti)-patterns useful for GI
– Patterns can hint at issues in language

– Ex. Inlining pattern
– Inlining identified as performance pattern
– Graal inlines by itself
– Root cause was bug

Slide 4 / 4

provide 

data

Compiler and Interpreter

improve 

with 


patterns

patterns

Pattern
Mining

representation,
language access


Genetic
Improvement

Truffle

Application

in Compiler


already
optimizes


	Motivation
	Conclusion and Outlook
	Appendix

