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What is a pattern?
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Why Mine Patterns?

– Software engineering is challenging

– More challenging when needing to optimize for Non-Functional
Properties (NFP)

– Example: 75% of Software Maintenance costs improve performance
or fix bugs [1]

– Goal: Find patterns, validate patterns, use patterns
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Knowledge-guided Genetic
Improvement

– Grammar-guided Genetic Programming
– Tree Genetic Programming
– Enriched with metadata

– loops, branches, NFP, ...
– Operators access context

– stack, heap, functions, ...
– Applies patterns and requirements

via Syntax Graph
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Independent Growth of Ordered
Relationships

– Mining of frequently recurring substructures
– Significant if occuring with a minimum support
– Discriminative pattern mining

– Often used for software fault mining
– Mining in two groups - succeeding and failing
– Discriminative pattern occurs more

often in one group
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Example: Bug Pattern
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Example: Bug Pattern
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Validating patterns

– Using KGGI Syntax Graph
– Create Mutants of n ASTs
– Validate confidence in hypothesis

– x% have a speedup due to pattern
– x% fail due to exception

– Side effects prevent 100% confidence
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Pattern Validation - Bug
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Using Patterns in GI
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Figure: Top: population in GI without patterns; bottom: with patterns
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Improvement of Run-time
Performance
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Application of patterns in GI

GI population

– Amount of ASTs overall doubled
– Amount of successful ASTs doubled
– Only 32.7% of ASTs with exceptions (down from 60.3%)

Run-time performance

– 22 / 25 ASTs improved
– Average of 33.5% faster
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Summary

Benefits

– GI at the compiler level
– Identify and explain patterns
– Apply patterns in GI
– Improves population quality and diversity

Drawbacks

– Large search spaces
– Mutation and Crossover costly
– Run-time performance measurement costs
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Outlook

– Improve Amaru
– Ease of use
– Additional algorithms
– Automation of pattern mining

– Additional Connectors

– More Truffle languages
– Additional compilers

– Answer your questions
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Contact

Code available under the MIT License at https://amaru.dev

Oliver Krauss
oliver.krauss@fh-
hagenberg.at

+43 (0)50804-27195
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Measuring Runtime Performance
– Semantic validity → test based + coverage metrics

– Accurate measures for NFP → 200,000 runs per AST in own JVM
– Takes time
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Generalizable Optimizations

★

write
TYPE

0


write
¬TYPE


0


– Switch of variable type
– Affects example language

MiniC
– Possibly generalizable
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Generalizable Optimizations

– Other performance (anti)-patterns useful for GI
– Patterns can hint at issues in language

– Ex. Inlining pattern
– Inlining identified as performance pattern
– Graal inlines by itself
– Root cause was bug
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