
Leveraging Program Invariants to Promote
Population Diversity in Search-Based

Automatic Program Repair

Zhen Yu Ding†, Yiwei Lyu‡, Christopher S. Timperley‡, Claire Le Goues‡

† University of Pittsburgh, ‡ Carnegie Mellon University

1

Bugs aren’t great...
In 2017

● 3.7 billion people affected
● Over $1.7 trillion of assets

affected

Reduces developer productivity

● Loss of time
● Frustration

Z 2

Automatic Bug Repair

Z 3

Automatic Bug Repair

Z 4

Buggy
program

Z 5

Pos.
Tests

Neg.
Tests

Z 6

Buggy
program

Pos.
Tests

Neg.
Tests

Candidate
patches

Z 7

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Z 8

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Y 9

Warning: this is not the normal GCD bug
often seen in APR!

Y 10

Y 11

Y 12

Y 13

Y 14

Works correctly when a != 0
Should return b when a = 0
This program returns 0 instead

Y 15

Works correctly when a != 0
Should return b when a = 0
This program returns 0 instead

Test Cases:

Y 16

a b Expected
result

Actual
Result

Passed?

5 7 1

0 2 2

12 16 4

3 0 3

0 10 10

...

Y 17

a b Expected
result

Actual
Result

Passed?

5 7 1 1 Yes

0 2 2 0 No

12 16 4 4 Yes

3 0 3 3 Yes

0 10 10 0 No

...

Works correctly when a != 0
Should return b when a = 0
This program returns 0 instead

Test Cases:

Problem:

Should return b when a is 0

This program returns 0 instead

Y 18

Problem:

Should return b when a is 0

This program returns 0 instead

Simplest fix is 2 steps:

(1) Delete line 16
(2) Replace line 4 with line 8

Y 19

result=b;

Simplest fix is 2 steps:

(1) Delete line 16
(2) Replace line 4 with line 8

If we only perform step 1 (partial repair):

Y 20

Simplest fix is 2 steps:

(1) Delete line 16
(2) Replace line 4 with line 8

If we only perform step 1 (partial repair):

● Still fails when a=0, passes otherwise
● Cannot be differentiated just from test

results.

Y 21

Patch indistinguishability
Test cases often fail to distinguish between different candidate patches.

Plateau-like fitness landscape.

Z 22

S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues, “A genetic programming approach to automated software repair,” in Genetic and Evolutionary
Computation Conference (GECCO), 2009, pp. 947–954.

E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing better fitness functions for automated program repair,” in Genetic and Evolutionary
Computation Conference, ser. GECCO ’10, 2010, pp. 965–972.

E. F. de Souza, C. Le Goues, and C. G. Camilo-Junior, “A novel fitness function for automated program repair based on source code checkpoints,” in
Genetic and Evolutionary Computation Conference, ser. GECCO ’18, 2018.

Goal: distinguish patches better

Z 23

Goal: distinguish patches better
Infer invariants to semantically describe candidate patches.

Find semantically unique/diverse candidate patches.

Z 24

Y 25

An intuition on why.

Invariants when running positive tests
(gcd(5,7), gcd(12,16), gcd(3,0), etc):

● a>=0
● b>=0
● result>=0
● a%result==0
● b%result==0

● ...

Y 26

An intuition on why.

One simple fix:

(1) Delete line 16
(2) Replace line 4 with line 8

Y 27

result=b;

An intuition on why.

One simple fix:

(1) Delete line 16
(2) Replace line 4 with line 8

If we only perform step 1 (partial repair):

● Still fails when a=0, passes otherwise
● Cannot be differentiated just from test

results.

Y 28

An intuition on why.

Invariant a%result==0:

● True when a != 0
● False when a=0 (result is 0)

Y 29

An intuition on why.

Invariant a%result==0:

● True when a != 0
● False when a=0 (result is 0)
● True when a=0 in partial repair

Y 30

An intuition on why.

Invariant a%result==0:

● True when a != 0
● False when a=0 (result is 0)
● True when a=0 in partial repair

Partial repair results in invariant behavior
change!

Y 31

An intuition on why.

Daikon – an invariant detection tool
A mature dynamic invariant detection technique

● Runs the program and record traces of intermediate variable values
● Analyze the traces to learn invariants

Y 32

Invariants when running positive tests
(gcd(5,7), gcd(12,16), gcd(3,0), etc):

● a>=0
● b>=0
● result>=0
● a%result==0
● b%result==0

● ...

All were detected by Daikon
Y 33

Z 34

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Z 35

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Starting
set of
invariants.Daikon

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Z 36

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Starting
set of
invariants.Daikon

Do these
invariants still
hold in
candidate
patches?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Z 37

Starting set
of invariants

a%result==0

b%result==0

result>=0

Z 38

Starting set
of invariants

Candidate
patch 0

a%result==0

b%result==0

result>=0

Z 39

Starting set
of invariants

Candidate
patch 0

Tested
against

a%result==0 Pos. tests

b%result==0

result>=0

= Invariant never violated
during program execution.

Z 40

Starting set
of invariants

Candidate
patch 0

Tested
against

a%result==0 Pos. tests

✘ Neg. tests

b%result==0

result>=0

= Invariant never violated
during program execution.

✘ = Invariant violated at least
once.

Z 41

Starting set
of invariants

Candidate
patch 0

Tested
against

a%result==0 Pos. tests

✘ Neg. tests

b%result==0 Pos. tests

result>=0

= Invariant never violated
during program execution.

✘ = Invariant violated at least
once.

Z 42

Starting set
of invariants

Candidate
patch 0

Tested
against

a%result==0 Pos. tests

✘ Neg. tests

b%result==0 Pos. tests

? Neg. tests

result>=0

= Invariant never violated
during program execution.

✘ = Invariant violated at least
once.

? = Invariant not testable.

Z 43

Starting set
of invariants

Candidate
patch 0

Tested
against

a%result==0 Pos. tests

✘ Neg. tests

b%result==0 Pos. tests

? Neg. tests

result>=0 Pos. tests

✘ Neg. tests

= Invariant never violated
during program execution.

✘ = Invariant violated at least
once.

? = Invariant not testable.

Z 44

Starting set
of invariants

Candidate
patch 0

Candidate
patch 1

a%result==0

✘

b%result==0

? ✘

result>=0

✘ ✘

= Invariant never violated
during program execution.

✘ = Invariant violated at least
once.

? = Invariant not testable.

Z 45

Starting set
of invariants

Candidate
patch 0

Candidate
patch 1

a%result==0

✘

b%result==0

? ✘

result>=0

✘ ✘

Invariant profile:
Describes the semantics of a
program based on a set of
predicates.

Z 46

Starting set
of invariants

Candidate
patch 0

Candidate
patch 1

a%result==0

✘

b%result==0

? ✘

result>=0

✘ ✘

Invariant profile:
Describes the semantics of a
program based on a set of
predicates.

We use string comparisons
to compare program
semantics.
● We use Hamming

distances.

Z 47

Starting set
of invariants

Candidate
patch 0

Candidate
patch 1

a%result==0

✘

b%result==0

? ✘

result>=0

✘ ✘

Invariant profile:
Describes the semantics of a
program based on a set of
predicates.

We use string comparisons
to compare program
semantics.
● We use Hamming

distances.

Δ(p0, p1) = 2

Z 48

Starting set
of invariants

Candidate
patch 0

Candidate
patch 1

Candidate
patch 2

a%result==0 ✘

✘ ✘

b%result==0

? ✘ ?

result>=0

✘ ✘ ✘

Invariant profile:
Describes the semantics of a
program based on a set of
predicates.

We can use string
comparisons to compare
program semantics.
● We use Hamming

distances.
We can calculate semantic
diversity.
● Sum the Hamming

distances.

Δ(p0, p1) = 2 Δ(p1, p2) = 3

Δ(p0, p2) = 1

diversity(p0) = Δ(p0, p1) + Δ(p0, p2) = 2 + 1 = 3
diversity(p1) = Δ(p1, p0) + Δ(p1, p2) = 2 + 3 = 5
diversity(p2) = Δ(p2, p0) + Δ(p2, p1) = 1 + 3 = 4

Z 49

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Starting
set of
invariants.Daikon

Do these
invariants still
hold in
candidate
patches?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Pos.
Tests

Neg.
Tests

Z 50

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Starting
set of
invariants.Daikon

Do these
invariants still
hold in
candidate
patches?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Invariant
profiles

Pos.
Tests

Neg.
Tests

Z 51

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Starting
set of
invariants.Daikon

Do these
invariants still
hold in
candidate
patches?

Selected
patches

Passing
positive tests

Passing
negative tests

Fitness function:
weighted sum

Invariant
profiles

Diversity
scores

Pos.
Tests

Neg.
Tests

Z 52

Buggy
program

Candidate
patches

A patch
passes all
test cases.

Repair
found!

How many test
cases does
each candidate
patch pass?

Selected
patches

Starting
set of
invariants.Daikon

Do these
invariants still
hold in
candidate
patches?

Invariant
profiles

Multiobjective
optimization
(NSGA-II)

Passing
positive tests

Passing
negative tests

Diversity
scores

Pos.
Tests

Neg.
Tests

Evaluation
● IntroClass is a set of small, buggy C programs collected from introductory

programming courses.
● IntroClassJava is a subset of IntroClass automatically transformed from C to

Java.
● Randomly sampled 59 out of 297 bugs in IntroClassJava for our experiment
● Run each selected bug 10 times with different randomization seeds.

Y 53

checksum digits grade median smallest syllables Total

2/11 14/75 19/89 9/57 13/52 2/13 59/297

Results
No evidence of improvement in repair performance.

Successfully shown that our approach:

● Promotes semantic diversity
● Improves fitness granularity (therefore reduced plateauing)

Y 54

Z 55

GenProg implicitly selects for semantic diversity.

Scalability
IntroClassJava is small (<30 LoC)
Defects4J is large, real-world Java bugs

Y 56

Lines of Code Number of Unit Tests

Apache Commons Math ~85K 3602

Apache Commons Lang ~20K 2245

Scalability
IntroClassJava is small (<30 LoC)
Defects4J is large, real-world Java bugs

● Infeasible to collect invariants by running all thousands of positive tests
● Instead, we only collect invariants by running positive tests co-located in the

same test class as the failing test cases.

Y 57

Lines of Code Number of Unit Tests

Apache Commons Math ~85K 3602

Apache Commons Lang ~20K 2245

Scalability
Overheads: invariant learning
and checking

Our approach is as scalable as
GenProg!

Y 58

Bug GenProg
Runtime (mins)

Our Approach’s
Runtime (mins)

Difference

lang11 59.77 64.37 1.08 X

lang29 29.72 37.05 1.25 X

lang36 34.80 41.08 1.18 X

lang8 97.50 103.98 1.07 X

lang9 55.07 70.87 1.29 X

math30 89.27 90.55 1.01 X

math44 98.43 176.88 1.80 X

math46 67.05 720.48 10.75 X

math79 100.55 119.63 1.19 X

math86 62.52 71.45 1.14 X

Median 64.78 81.00 1.19 X

Mean 69.47 149.63 2.18 X

Conclusion

Z 59

Conclusion
Test cases often can’t distinguish between different patches.

Z 60

Conclusion
Test cases often can’t distinguish between different patches.

We use inferred invariants to get more semantic information.

Z 61

Conclusion
Test cases often can’t distinguish between different patches.

We use inferred invariants to get more semantic information.

We encourage exploration of semantically diverse patches.

Z 62

Conclusion
Test cases often can’t distinguish between different patches.

We use inferred invariants to get more semantic information.

We encourage exploration of semantically diverse patches.

Invariants can effectively promote diversity & semantic exploration.

Z 63

Conclusion
Test cases often can’t distinguish between different patches.

We use inferred invariants to get more semantic information.

We encourage exploration of semantically diverse patches.

Invariants can effectively promote diversity & semantic exploration.

No conclusive results on improvements to repair success and efficiency.

Z 64

