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Abstract—GISMOE BNF grammar based GI is applied to
optimise run time of the tree interpreter in the fastest single
computer floating point genetic programming system, GPavx. Up
to two fold speed up is obtained. Performance varies with tree
size. The GI version of Singleton’s C++ GPquick is demonstrated
on random trees of up to 79 million opcodes on Intel AVX512
SIMD parallel compute servers.

Index Terms—Testing, GP, GI, Dogfooding, Advanced Vector
eXtensions (AVX) Single Instruction Multiple Data (SIMD), SBSE

I. INTRODUCTION

We apply our Genetic Improvement (GI) system to our new
parallel version of Genetic Programming (GP) [1]. Such
“eating your own dogfood” [2] is rare and this is the first time
GI has been applied to speed up GP. In the process evolution
overturned more than 25 years of established wisdom.

Recently we manually extended Andy Singleton’s GPquick
system [3] for parallel operation on a new generation of
Intel AVX 512 multi-core servers [1]. Our goal was to study
evolution [4] over far longer than usual GP runs. Indeed some
runs reached a million generations and continued to find fitness
improvements many thousands of generations after GP runs
are usually terminated [5]. In the process trees with hundreds
of millions of nodes were evolved. With run time in weeks,
we were keen to improve GPavx’s efficiency. As expected, the
new interpreter was the performance bottleneck. Excluding
a few specialised or image processing benchmarks running
on graphics hardware, at up to 149 billion GP operations per
second (149 109 GPop/s), GPavx is the fastest single computer
GP system [6, Tab. 3]. Nevertheless we set out to see if genetic
improvement could speed it up.

Following the background (next section), Sections III and IV
described our grammar system and fitness function. Section V
describes four progressive experiments starting with the sim-
plest part of the interpreter and ending with running six
different conditional compilation options for the whole tree
GP AVX interpreter. Sections VI and VII deal with new post-
evolution processing and validation. Section VIII discusses
the background of earlier attempts to speed up GP before
we conclude (in Section IX) that evolution can over come
considerable noise, has upset established wisdom and can
indeed speed up the fastest GP system on the planet.

II. BACKGROUND

A. Intel AVX512 float vector[16] Parallel Instructions

The AVX instruction set was originally introduced into the In-
tel x86 family of processors via specialist accelerator Xeon Phi

cards in response to increasing use of nVidia GPUs for general
purpose computing on GPUs (GPGPU). The AVX extensions
give the ability to perform a single operation on a small
vector of data simultaneously. This is referred to as single
instruction multiple data (SIMD) parallel processing. The
AVX512 extension provides operations to manipulate integer,
floating point and double precision numbers in (typically cache
aligned) vectors of 512 bits (e.g. 16 × 32 bit float).

B. GPquick: C++ Genetic Programming System 1993–2018

GPQUICK [3] is an implementation of Koza’s genetic pro-
gramming system [7] written in C++. Singleton appears to
have used implementation tricks suggested by Keith and
Martin [8]. In particular they recommend using a Pre-fix Jump
Table (PJT). When interpreting the GP tree, the PJT allows
the direct dispatch of the code responsible for implementing
each function or leaf without use of switch/case or if/else
statements [8, page 300]. In the more than a quarter of a
century since 1994, GPQUICK has been maintained (including
porting to new hardware, e.g. Dec Alpha, CUDA [9] and of
course Intel) but the assumption has always been retained that
the jump table is the right way to go. In Sections V-D and
V-E we will show that, for big trees, evolution can find more
efficient switch/case approaches.

C. Background: Genetic Improvement

Genetic Improvement [10]–[16] has been widely applied,
including automatically fixing bugs [17], [18], reducing energy
consumption [19] improving predictions [20] and reducing run
time [10], [21]. Lopez-Lopez et al. [22] applied our GISMO
GI framework [10] to Gagné’s Beagle Puppy [23], an open
Evolutionary Computing framework which includes GP and
emphasises ease with which programmers can adapt it to new
EC ideas and mutation operators, rather than raw GP speed.
Lopez-Lopez et al. [22] do not report speed, instead they
concentrate upon trying to evolving a GP algorithm which
gives better symbolic regression models. In the following
sections we describe using GISMOE to speed up the world’s
fastest GP system without changing in anyway its output.

III. REPRESENTATION AND GENETIC OPERATORS

For our Genetic Improvement system we used GISMOE
[10], [22], [24]. (Other GI systems include GIN [25] and
PyGGI [26].) GISMOE is a grammar based GP system in
which the source code to be evolved is first automatically con-
verted into a BNF grammar specific to that code. Variable rules
within the grammar can then be mutated. The individuals in
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the population are variable length lists of grammar mutations.
GISMOE allows variable BNF rules to be: deleted, replaced
by another rule of the same type, swapped with another rule of
the same type, and another rule of the same type to be inserted.
(Table III has some examples.) We also include grammar rules
for the whole of the Intel AVX library. These are typed by
method signature to ensure existing AVX code can be replaced
by compatible AVX library intrinsics. The are also special
vecsize mutations which convert between AVX-128, 256 and
512 bit instructions [24].

To evaluate an individual each of the grammar mutations
it contains is applied (in left right order) to the grammar,
giving a new grammar. The new grammar is inverted to
give C++ code, which the fitness function will attempt to
compile and run. The grammar will ensure that the new
source code is syntactically valid C++ code but does not
ensure it will compile. Compilation errors are usually due
to moving variables out of scope. The fraction of the initial
random population which compiles varies between 37% (in
Section V-C) to 100% (in Section V-A).

If an individual is selected to be a parent of the next
generation: 1) a child is created by appending a random
mutation to the parent and 2) a single child can be created
by two point cross over between it and another parent [24].
In some runs, the initial population contains few individuals
which run ok and yield correct answers, in which case the
missing children are created at random (as in the initial
population). This injection of random individuals continues
until the number of error-free individuals is sufficient to fill
the next generation.

A. BNF Grammar Special Cases: Blank Lines, vzeroupper

The GP interpreter is 59 lines of code (excluding header files),
split over six opcodes (+ − ×/x and ERC constants). Thus
each part is small, leading to a compact BNF, which might be
less evolvable. To allow evolution additional flexibility, blank
lines were added after each statement. This makes it easy to
insert code both before and after existing statements.

Whilst trying to understand why AVX code might
be slow, various online posts were consulted. One on
stackoverflow suggested vzeroupper might resolve known
problems with Intel’s skylake processor. Since our cluster
uses skylake processors, we added a read only rule to the
grammars allowing evolution to insert the assembler statement
__asm__ __volatile__( "vzeroupper" : : : );

IV. FITNESS FUNCTION

A. Random Trees as Random Test Cases

The mutated code is run on a random test case. Assuming it
runs without error and gives the same answer as the released
code, its fitness is the difference between its run time and that
of the released code. To be eligible to be selected as a parent in
the next generation, the mutated code must run without error
and produce the correct answer. Even slower mutants can be
parents but of course must still compete on fitness (run time)
with the rest of the population.

TABLE I
DEFAULT GENETIC IMPROVEMENT PARAMETERS.

Representation: variable list of replacements, deletions, swaps and insertions
into BNF grammar comprised of Eval() C++ code specific
rules, plus 5694 rules for the Intel Intrinsics library [24].

Fitness:
compile with g++ 9.2.0 -O3 -DNDEBUG -pthread -march=skylake-avx512.
Run on random tree changed every generation. log distribution tree size
(half lie below 1000 and half above). Fitness is difference in quartiles of
elapsed time between original and evolved C++ code (Section IV).

Population: 100 (500 in Section V-C), panmictic, no elite, generational.
Parameters: Initial population of random single mutants. Best half se-

lected to be parents. 50% two point crossover, 50% mutation.
No size limit. Stop after 100 generations.

We typically run overnight, < 12 hours, so to keep GI
run time manageable, the test cases used in both pass 1
and 2 (Section IV-D, next page) were kept small. (They
are between 102 and 104 nodes, geometric mean 1000, see
Table I). Section IV-E, next page, adds a third pass with
random trees of about 20 million opcodes. A high resolution
(64 bit nanosecond) clock provided by the server CPU is used.
To avoid overfitting, both the size and contents of the test case
to be evaluated were changed every generation.

B. for Loops Not Mutated to Avoid Infinite Loops

The evolved code to be evaluated contains no branches but
contains for loops. It turns out the consteval and diveval for
loops are identical and so there is no virtue in mutations which
interchange their components. Except for special AVX vec
processing [24], this leaves only delete mutation and since, in
this case, deletion will only remove the loop or cause it to loop
indefinitely, it was decided to prevent non-vec for mutations.

C. Reducing Fitness Noise with Robust Average Runtime

Program runtime is notoriously noisy. (Even the unix perf
stat count of instructions:u shows some variation.) This is
compounded by 1) running on servers within an active cluster,
in which both the number and the nature of the other jobs
varies continuously. 2) The cluster servers use active power
management to independently vary each core’s CPU clock
frequency (between 1.00–3.00 GHz, nominally the server is
2.3 GHz). Indeed frequency changes can happen while genetic
programming is running on the core. Also jobs on the server
can be moved between cores.

In view of this noise, the reference code and the evolved
code were run multiple times alternately as close together as
possible. Since run time suffers from long tails, and we only
care for the difference, we took the average of the multiple
runs to be the first quartile of all the times. (This effectively
discards the longer half of the data and then takes the median
of the short half.) For short runs, we take the first quartile of
11 runs, i.e. the third, see Figure 1.

In Section V-E, to save run time, with trees of more than a
million nodes, we rely on the longer run time to average out
enough of the noise and take fitness as the difference in run
time between one run of the reference code and one run of
the mutated code.
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Fig. 1. Example of using first quartile 2 of 11 run times to give robust
estimate of difference between reference code (solid line) and evolved code
(dashed line). In this example, elapse times from run 5 onwards are almost
identical (quartile difference 0.472 µS). Note mean as an average is susceptible
to outliers, e.g. run 1, and would have given a difference of 3.603 µS.

D. Two or Three Passes: Array Index and Addressing Errors
To detect array out of bounds addressing errors, in the first
pass run time assert statements were automatically inserted
before each array and stack pointer access (“Assert pass1” in
Figure 2). To speed up GISMOE run time, in pass 1, the GNU
C++ compiler (version 9.2.0) was used without optimisation.
The first pass detects all compilation errors and almost all run
time errors (Figure 2), however the additional checks mean it
cannot be used to reliably estimate run time.

Instead mutants which compile, run ok and yield the correct
answer, are recompiled using all the optimisation switches
used by the original GPavx distribution kit1. This includes
-DNDEBUG, which removes all assert statements. The opti-
mised code is then run on the test case for this generation and
(assuming it calculates the right answers) its (1st quartile) run
time relative to the distributed code is used as the fitness of
the mutant (previous Section, IV-C).

E. Pass 3 Fitness Testing on Big (20 million opcode) GP Trees
In the last set of experiments, Section V-E, a third pass was
added, which uses far bigger trees (20 million nodes bigger).
This was because our goal is running extended evolution with
humongously large trees (Section I) and so we want evolution
to optimise the interpreter for very big trees. To reduce fitness
evaluation time, we do not test slow mutants (i.e. speedup
< 1.0 in pass 2) a third time. Runtime is now in the region of a
second, rather than microseconds, so we expect that noise to be
a small fraction of runtime. Therefore, again to reduce fitness
evaluation time, in the third pass we only run the reference
code and the mutant code once each, rather than 11 times. Note
in the later runs, a single mutant can have multiple fitnesses,
e.g. from pass 2 and from pass 3. Since pass 3 fitness values
are typically many thousands of times bigger than those from
pass 2, mutants which run pass 3, dominate the population.

1http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
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Fig. 2. Example of evolution of errors in 010 run Section V-E (other
experiments are similar). For simplicity plot shows cumulative error during
fitness evaluation. Since there are very few pass 2 and pass 3 errors, lines after
pass1 are almost parallel to the y-axis. There are never compilation failures
or segmentation faults in pass 2 or 3. In this run all compilable mutants
produced changes in object code (both pass 1 and 2) and there were no
incorrect answers in pass 2 or 3. On average 57% of the population (100)
evaluated large (20 million) random trees correctly without slow down.

OPDEF(ConstEval) {
assert(EvalSP <

&evalstack[nthreads*MAXTESTCASES*evalstacksize]);
const float val = GETVAL;
for(int i=0;i<MAXTESTCASES;i+=8) {
//https://software.intel.com/en-us/node/524140
//No corresponding Intel AVX instruction.
_mm256_store_ps(&EvalSP[i], _mm256_set1_ps(val));

}
inc_EvalSP;

}
Fig. 3. Fragment of original AVX GPquick interpreter (evaluation of
constants). Note use of older 256 bit instructions rather than AVX-512.

V. EVOLUTION OF FASTER GP TREE INTERPRETERS

To gain confidence, before attempting to optimise the whole
AVX GP interpreter, we started with the simplest part, evalu-
ation of constants (next section). Since this was successful, in
Section V-C we next attempted to improve the code to evaluate
protected division which is the largest of the eval functions.
Section V-D and Section V-E describe 1+6 approaches to
optimising the whole AVX interpreter.

A. Interpreting Constants

Figure 3 shows the original C++ code for interpreting constant
opcodes. OPDEF is the GPquick macro for defining part of the
interpreter. Similarly GETVAL is a macro for converting the
current opcode into the corresponding floating point constant
(ERC) value.

Before evaluation the address of each OPDEF function is
loaded into the PJT jump table (Section II-B). We have two
jump tables. The first for the original reference code and a
second for our evolved code.

In most GP systems, including serial versions of GPquick,
the GP tree is interpreted once per test case, i.e. repeatedly. If
the GP tree does not fit into L1 cache, this may be expensive.
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However GPavx uses a single pass through the tree to allow the
interpreter to take advantage of the SIMD parallel operations.
The interpreter AVX code performs each operation in the GP
tree once on all the test cases before moving onto the next
node of the tree. Thus traversing the tree only once.

The original AVX code uses an explicit stack. To support
parallel operation, each consteval pushes a vector MAXTEST-
CASES=48 floats onto the stack, whilst functions (internal
nodes) pop two such vectors. (GPavx supports only functions
with two arguments.) They then use SIMD operations to do the
required calculation and then push MAXTESTCASES results
back onto the explicit stack.

The original code (Figure 3) uses various AVX instructions.
As before [24] the BNF grammar is automatically generalised
by replacing specific AVX instructions with vec variants.
Evolution can tune these to 128, 256 or 512 bit variants. Notice
the original code used 256 bit variants, but evolution is able
to replace these with more recent 512 bit versions.

Each generation the fitness function generates a series of
random ConstEval opcodes (each corresponding to a single
node tree) and runs both the original and each mutated Const-
Eval interpreter on them. Each should push the corresponding
constant onto the stack. The fitness function checks that the
stack contains the right contents (including its depth) and
records the difference in run time (1st quartile, Section IV-C).
Notice that the stack is the same depth as the number of
random operations (between 100 and 10 000) but contains 48
floating point values at each level.

As with Sections V-C to V-E, evolution is run with the de-
fault parameters given in Table I. For ConstEval the population
is 100 and there are 15 grammar rules specific to ConstEval.
After 100 generations, the best in population reports a speed up
of 21%. Figure 4 reports actual speed for 100 runs for various
numbers of random opcode. This was sufficiently encouraging
to continue to the largest of the AVX interpreter’s functions,
protected division, Section V-C.

B. Estimating Intel L1 Cache Performance

ConstEval is the simplest of our test cases and therefore liable
to get the most out of the L1 cache. When loading 151 random
test cases onto the stack, the best mutant gets on average
about 8.01e+09 GP operation per second, Figure 4. Because of
the AVX operations, we are actually doing 48 GP operations
together. It is to be hoped that the compiler will be able to keep
all the highly access indexes and loop counters in registers, and
thus only the stack, opcode, PTJ, ERC and evalstack memory
will have to be read/written via the L1 cache per 48 GP unit.
I.e. 1 cache line each, except for evalstack, where 48 floats
occupy 3 cache lines. We estimate this at 7 = (1+1+1+1+3)
cache lines, suggesting the maximum L1 cache data rate is
7 × 64 bytes × 8.01 109 GPOPs−1/48 = 70 Gigabytes per
second (i.e. 1200 million cache lines per second).

Given an estimate of peak cache performance we can
place an upper bound on the performance of the best GP
AVX interpreter. On an average GP operation, the 010 mu-
tant (Section V-E) perhaps has to read the stack and an
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Fig. 4. Performance of simplified evolved GPquick interpreter for ERCs.
Although trained on 100 . . . 10 000, the evolved code extrapolates to a million
random one node trees. Vertical lines show impact of data caches. Notice
variation across 100 runs of each test case. (Small horizontal displacement
added to make overlapping data more visible.)

opcode. Then 50% of the time (a function eval) read the
evalstack twice and write it once, 25% of the time (XEval)
transfer 48 floats onto the evalstack, and 25% of the time
(ConstEval) read an ERC and write 48 floats onto the
evalstack. Expressing this in terms of cache lines, gives:
1 + 1+0.5×3×(2+1)+0.25×3×2+0.25×(1+3) = 9 cache
access per opcode. If our estimate of L1 cache bandwidth is
accurate then this gives an upper limit of 48× 1200 million/9
= 6 billion GP Operations per second (6 Giga GPOP/s) per
Xeon 5118 core. For 48 cores this gives a total of 300 Giga
GPOP/s. Worryingly the best results [5, Tab. 3] is already
within a factor of two of this, suggesting major improvement
is not possible by code improvement alone but more radical
approaches are needed. Such as, since many GP operations
have no side effects, avoiding re-evaluating parts of the trees
which have not been modified, Section VIII-C.

C. Interpreting Protected Division

Protected division is more complicated that the three other
binary functions which GPavx supports, as it must detect
in parallel division by zero and generate 1.0f as the default
value. Building on ConstEval (Section V-A) and since the
AVX code contains no branches, the fitness function could
be quite simple. It generated a long random list of three
node random trees. Each containing protected division of two
random constants. As with ConstEval each tree should leave
its answer on the stack to be checked by the fitness function.
As before the same fitness test case is used for the whole
of each generation but replaced in the next generation. The
number of random 3-trees is similarly chosen logarithmically
from 100/3 to 10 000/3.

At 67 rules, the grammar is much bigger than consteval.bnf
(note it also uses the newly evolved ConstEval gp, Sec-
tion V-A). Therefore the population size was increased from
100 to 500. Figure 5 shows the best speed up in generation 100
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Fig. 5. Speed up of best of each generation (population 500). Combined
diveval and consteval, Section V-C. Five noisy points above 1.8 omitted.
Notice rapid initial rise in fitness but (perhaps due to the impact of noise) later
variability. (We have 11 timings for the non-mutated reference code, Figure 1.
Noise is estimated by (4th − 2nd)/3rd fastest reference times.)

was 89%. However Figure 5 suggests this was out of the usual
run of the later populations, nevertheless we were encouraged
to consider expanding to allow evolution to consider afresh
the whole of the AVX GP tree interpreter.

D. Whole AVX GP Interpreter (Shared Population)

In the last experiments (this and the next section) we automati-
cally generate BNF grammars covering the whole of the AVX
GPquick interpreter. Each generation the mutants are tested
on one complete randomly generated tree of between 100 and
10 000 nodes (as above). We return to a population of 100.

As mentioned in the previous section, a large fraction of the
interpreter is devoted to protected division where evolution
had already given some encouraging results. However we
feared the remaining functions (XEval, AddEval, SubEval
and MulEval) would give little additional room for evolution.
Therefore we decided to allow it to revisit some previous
manual design choices. Additional conditionally compiled
code was added by hand to allow replacing the PJT jump
table by a switch statement (FUNC=0) and to replace the
explicit stack by using conventional return statements (EVAL-
STACK=0). EVALSTACK=0 makes the evaluation return type
a 16 float vector, so the GP tree must be processed MAXTEST-
CASES/16 (i.e. 3) times. Conditional compilation of these
two options give four possibilities. Here the BNF grammar
(129 rules) contains conditional compilation, which cannot be
mutated, but the code covered by it can be evolved.

We treat each mutant as if it existed in four independent
environments: FUNC: with switch/case or PJT jump table,
EVALSTACK: with implicit stack (3 passes) or with explicit
stack. That is, each mutant is (conditionally) compiled four
times for pass one (i.e. with asserts and no optimisation) run
and its output is compared with that of the original code.
As before, if it gives the correct answer, it is complied (with
optimisation) and run again. Notice each mutant is compiled
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between 4 and 8 times and can have up to 4 fitness values.
Figure 6 shows speed up of more than two fold were reported
(albeit 1.5 fold is more typical).

In several cases we saw evolution mutating the order of
case statements to place more frequently used opcodes nearer
the switch statement. Potentially this reduces opcode dispatch
overhead. Since the switch statement is all code and thus
visible to the compiler (whereas the PJT jump table is less
visible) possibly it is more open to compiler optimisation. We
certainly see heavy use of compiler optimisation tricks such
as inlining function calls and unrolling loops.

Figure 6 shows evolution quickly favoured one of the four
environments. Indeed it appeared that fast mutants were not
only successful but also “poisoning” their competitors by
injecting compilation errors into conditionally compiled code
they did not use. Thus in many cases children of successful
mutants would fail to compile in at least two of the four
environments. Therefore in the last experiments (next section)
we used separate populations rather than allowing competing
mutants to co-evolve.

E. Evolving whole AVX GP interpreter (6 Separate Grammars)

In the last experiment we added another design choice to
evolution. In the previous section, deciding not to use the
external stack required the tree to be processed 3 times
therefore we manually added another conditionally compiled
option, T48, which made each eval function in the AVX
interpreter return all 48 (MAXTESTCASES) in one go. The
interpreter’s EVAL function is called recursively at the top of
the GP tree and returns answers for all 48 test cases in one
pass of the tree. Effectively using the system stack in place of
the explicit EVALSTACK. Although T48 can be true or false,
it is only valid when EVALSTACK=0 thus there are now 6
(rather than 8) environments to test mutants.
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As noted in the previous section, attempting to co-evolve
mutants in multiple environments seems to cause unnecessary
competition. Therefore we decide to use separate runs and so
separate populations for each environment. We automatically
generated 6 BNF grammars, one for each valid setting of the
three conditional compilation symbols, FUNC, EVALSTACK
and T48, and ran each with a population of 100 for 100
generations. (The six grammars contain 000 49, 001 57,
010 86, 100 49, 101 57 and 110 86 BNF rules.)

We seem to be getting good speed up on relatively small
trees (102 − 104 nodes) but want also to ensure the evolved
AVX interpreter scales to humongous trees, so we added a
third pass to fitness testing (see Section IV-E above). Good
mutants are now also tested on a random tree which is
20 000 000 nodes longer than the one used in the first two
passes. As in the previous section, mutants can have multiple
fitness values, however good fitness on the 2 107 node GP
trees quickly dominates selection, Figure 7.

Using EVALSTACK by itself (010, solid red in Figure 7)
gave consistently the best results on the 20 million node GP
trees, followed by the original environment (110, dashed blue)
and then the jump table and implicit stack (101 FUNC=1
T48=1, dotted purple).

VI. USING ASSEMBLER CODE TO REMOVE BLOAT

The best of the last generation mutants evolved in the last
experiment covering the whole AVX GP interpreter (Figure 7)
are somewhat bloated (column 3 of Table II). Previously,
e.g. [10], we used fitness to thin the evolved mutants by
removing genes which had no impact on fitness. As our fitness
(runtime) is so noisy we sought something else and choose
comparing the compiler’s assembler output [27] to indicate
which parts of the evolved mutants actually make a difference.

For each of the three promising cases (010, 110, 101) the
best individual from generation 100 was used. g++ with -S and
the usual command line options was used to compile again
the evolved code, but -S causes the C++ compiler to generate
an assembler .s text file. The mutant’s .s file was saved. The

TABLE II
USING ASSEMBLER CODE AS A GUIDE ALLOWED NOISELESS REMOVAL OF

INEFFECTIVE CODE FROM BEST OF GENERATION 100 GI INDIVIDUALS

Environment Number of genes
evolved final

010 switch and explicit stack 16 6
110 PJT jump table and explicit stack 20 3
101 PJT jump table and eval in one pass (T48) 23 2

evolved mutant contains len genes, there are len mutants with
one gene removed from it. These len mutants were created
and compiled as far as generating their .s file. The len shorter
mutants’ .s files were each compared with the evolved mutant’s
.s file. If they were identical, the corresponding gene was
removed from the evolved mutant. In some cases knocking
out a gene caused the shorter mutant not to compile, so the
gene was retained. However when all len short mutants had
been tried and a new shorter mutant created, a second pass
of gene removal was used. This resulted in no compilation
errors and an even shorter mutant. Table II gives the number
of genes before and after assembler code based clean up.

VII. OUT OF SAMPLE TESTING

The performance of the three cleaned up codes relative to
the distributed original GPavx code for a wide range of
random GP tree sizes is given in Figure 8. Table III gives
performance for the three mutants during training (pass 2 and
pass 3) as well as two unrelated random trees (sizes 995 and
20 056 365). Table III is broken into three section (one for each
tidied mutant). After each row of performance data, comes the
mutant itself. The mutant’s genes are separated by white space.
Each gene defines one BNF grammar change. This is followed
by a text description of how the whole mutant works.

The estimate of noise given under “p2” is based on variation
across the 11 runs used to measure fitness. Typically this
takes a handful of microseconds during which neither the
load on the server nor its clock speed changes. This allows
us to get a good estimate of the speed of the mutant code
being tested and that of the original code. However over a
period of even a few minutes these two factors do change
leading to larger estimates of noise given in columns “995
speedup” and “20 056 365 speedup”. Also note that the p2 and
p3 figures relate to the best in generation and so part of their
high score could also be attributed to randomness due to noise
and so we could interpret them as the luckiest members of
their generation. Since Figure 8 (and “995” and “20 056 365”
columns in Table III) show 100 widely spaced runs for each
tree size they give a more representative measure of out of
sample performance.

VIII. DISCUSSION: ALTERNATIVE FAST GPS

As well as specialised hardware accelerators such as graph-
ics cards [9] and parallel computing [28], there are several
software based approaches for fast GP. For example, avoiding
trees by using linear GP [29] or Cartesian GP [30].
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Fig. 8. Speed up (red +) of GI optimised GPquick interpreter using evolved
switch statement on random binary trees on multi-user Intel Xeon Gold 5118
2.30GHz server (max 79%). GI optimised user stack (blue × max 2.1 fold).
Cluster power management changes CPU clock frequency continuously. Error
bars give interquartile range. Vertical bars show impact of data caches.

TABLE III
3 EVOLVED MUTANTS AFTER BLOAT REMOVAL (SECTIONS VI VII).

Environment Speedup
size p2 p3 995 20 056 365

010 6 40%±0.2% 16% 30%±4% 11%±0.7%
vecsize=16 <CASE 34>x<CASE 32> <CASE 34>x<CASE 33>
< 139>x< 137> <CASE 35>x<CASE 34> <CASE 35>x<CASE 31>
vecsize=16 ensures AVX512 SIMD instructions are used through out.
<CASE mutants reorder case: in eval dispatch switch moving XEval closer
to switch statement and placing MUL and DIV before ADD and SUB.
Swapping lines 139 and 137 moves the assignment of e0 to later in Eval2.
e0 is not used. Perhaps moving it makes it easier for the compiler to remove.
110 3 23%±1% 14% 52%±35% 3%±9%
vecsize=16 < 138>+< 266> < 135>x< 139>
vecsize=16 ensures AVX512 SIMD instructions are used through out.
Insert assembler vzeroupper (line 266, Section III-A) between the two EVAL
in Eval2(), line 138.
Swapping lines 139 and 135 moves the assignment of e0 to later in Eval2.
e0 is not used. Perhaps moving it makes it easier for the compiler to remove.
101 2 31%±2% 31% -23%±12% -2%±2%
< 168> < 45>< 261>
Deleting line 168 removes redundant code to set variable to zero.
Insert assembler vzeroupper (line 261) at the start of function ConstEval t48

A. Compiling to Machine Code instead of Interpreting

Fukunaga et al. [31] advocates a pre-pass through each GP tree
which generates machine code directly from it. For each fitness
test instead of interpreting the tree, the corresponding machine
code is executed. They say the one off cost of generating the
machine code quickly pays for itself. They compile for a RISC
architecture (Sun UltraSparc 2) rather than AVX extensions for
a Intel’s x86, so generation of good machine code might be
easier. Also, although they stress the speed of their compiler,
they say the “maximum speedup ... when the number of test
cases is 1000”. Whereas (due to use of parallel instructions)
we use only three (3× 16 = 48) test cases.

Non-avx GPquick’s FASTEVAL conditional compilation
is somewhat similar. With FASTEVAL there is a pre-pass
in which tree opcodes are converted to function addresses

(rather than machine code). This means the linear array of
opcodes is replaced by a linear array of function addresses,
thus eliminating the indirection step inherent in using the Pre-
fix Jump Table (Section II-B). For AVX, as well as requiring
multiple passes through the tree it would also mean (for 64 bit
addressing) eight times as many bytes passing though the
caches which suggests it will only help with many fitness tests
and trees smaller than 1

8 cache size. In principle the address
array could be used throughout GPquick, i.e. by mutation and
crossover operations, thus also eliminating the need for a pre-
pass before interpreting each GP tree. However it would mean
the memory required to store the population would be eight
times as much and the current FASTEVAL code does not
support this.

B. Evolving Machine Code

A very successful extension to linear GP is to replace in-
terpreting the (linear) genome by machine code. That is, to
define mutation and crossover operators which act on machine
code. Nordin’s original work was similarly based on the RISC
architecture (Sun-4 workstation) but Nordin later showed that
evolution of Intel x86 machine code is possible [32] indeed
the commercial system Discipulus runs on Intel x86.

C. Interpreting Only Part of the Tree

We can avoid interpreting the whole tree and evaluate only
the parts changed by evolution. Handley [33] suggested a very
compact encoding in which the whole evolving population is
stored as a single directed acyclic graph (DAG). It is often
the case that GP primitives do not have side effects and use a
static fitness function so trees within the population need only
be re-evaluated if they are changed [7]. Indeed if intermediate
subtree fitness values are cached within the DAG, only the part
of the tree between the change and the root node needs to be
re-evaluated. In typical GP usage this reduces the evaluation
from O(n) to O(

√
n), where n is the average size of the trees.

Sutherland [34] implemented this in Java.
Tree interpreters for side-effect free problems, can recog-

nise subtree results which mean a function argument can be
ignored [7]. E.g. in (MUL 0 subtree2), subtree2 can
be skipped. However, although large trees are often composed
almost entirely of introns (dead code) [35], initial unpublished
results suggest savings can be small.

IX. CONCLUSIONS

Even in a noisy multi user cluster environment, on a server
which uses power management to dynamically throttle the
CPU clock, genetic improvement (GI) found changes to the
code of the fastest (single computer) genetic programming
(GP) system which make the main GP interpreter engine up
to twice as fast, see Figure 8. The switch/case based variant,
it is up to 79% faster. On smaller trees (up to 1000 nodes) an
average speed up of between 10% and 50% can be expected
(red+ line in Figure 8). The GI code consistently gives an 11%
improvement on very big trees. We showed g++ -S assembler
output can winow chaff genes to noiselessly remove bloat.
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It is established wisdom [8] that a jump table is the efficient
way to code a C++ GP interpreter. This assumption was
built into GPquick from the start and although many different
versions of GPquick have been released this is the first work to
challenge it. We show, with a modern C++ compiler, a switch
statement decoding GP byte opcodes can yield a more efficient
GP interpreter, when the PJT table is displaced from L1 cache.

It was thought, given the Intel x86 is a stack based machine,
that the compiler would be happier with using the hardware
supported implicit stack. However the most efficient mutant
did not dispense with the explicit stack. This may be because
the AVX 512 bit parallel SIMD vector instructions typically
have to be aligned to 64 byte cache boundaries. Therefore
it may be this alignment does fit well with other uses of
the system stack. (Typically calling functions and passing
arguments to them uses much less than 64 bytes).

It appears that the AVX interpreter is now limited by
L1 cache bandwidth, rather than code execution time and
further improvements will have to reduce data read/write rates.
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